M.Sc. Physics

(Two Year Programme)

Curriculum, Programme Structure and Course Contents

(Prepared in conformity with TANSCHE, LOCF, CBCS)

(2023-2024 onwards)

DEPARTMENT OF PHYSICS Manonmaniam Sundaranar University Tirunelveli

M.Sc. DEGREE PROGRAMME IN PHYSICS PROGRAMME STRUCTURE

Preamble

The curriculum for the P.G. Physics for university department is revised as per Learning Outcomes- based Curriculum Framework (LOCF). The learner centric courses are designed to enable the students to progressively develop a good understanding of the concepts of various domains in physics. Significant modification is the inclusion of the courses to equip students to face challenges in industries and make them employable. Skill development in different spheres and confidence building are given a special focus.

TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK FOR POSTGRADUATE EDUCATION						
Programme	M. Sc., Physics					
Programme Code						
Duration	PG – 2YEARS					
Programme Outcomes (POs)	PO1: Problem Solving Skill Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context. PO2: Decision Making Skill Foster analytical and critical thinking abilities for data-based decision-making. PO3: Ethical Value Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities. PO4: Communication Skill Ability to develop communication, managerial and interpersonal skills. PO5: Individual and Team Leadership Skill Capability to lead themselves and the team to achieve organizational goals. PO6: Employability Skill Inculcate contemporary business practices to enhance employability skills in the competitive environment. PO7: Entrepreneurial Skill Equip with skills and competencies to become an entrepreneur. PO8: Contribution to Society Succeed in career endeavors and contribute significantly to society. PO 9 Multicultural competence Possess knowledge of the values and beliefs of multiple cultures and a global perspective. PO 10: Moral and ethical awareness/reasoning Ability to embrace moral/ethical values in conducting one's life.					

PSO1 – Placement

To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.

PSO 2 - Entrepreneur

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.

PSO3 – Research and Development

Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.

PSO4 – Contribution to Business World

Programme Specific Outcomes (PSOs)

To produce employable, ethical and innovative professionals to sustain in the dynamic business world.

PSO 5 – Contribution to the Society

To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

PSO 6 Students will utilize e-resources, digital tools and techniques for widening their knowledge base.

PSO 7 Students gain exposure to programming language and skills.

PSO 8 Student will appreciate the interplay of mathematics, physics and technology.

PSO 9 Students will develop adequate knowledge and skills for employment and entrepreneurship.

PSO 10 An awareness of civic and ecological duties as good citizens and importance of human values will be inculcated in students

Template for P.G., Programmes

Semester-	Credit	Hour	Semester-II	Credit	Hour	Semester-	Credi	Hour	Semester-IV	Credit	Hour
I		S			S	III	t	S			S
Core-I	5	7	. Core-IV	5	6	Core-VII	5	6	Core-XI	5	6
Core-II	5	7	Core-V	5	6	Core-VIII	5	6	Core-XII	5	6
Core – III	4	6	Core – VI	4	6	Core – IX	5	6	Project with viva voce	7	10
Elective -I Discipline Centric	3	5	Elective – III Discipline Centric	3	4	Core – X	4	6	Elective - VI (Industry / Entrepreneurs hip) 20% Theory 80% Practical	3	4
Elective-II Generic:	3	5	Elective -IV Generic:	3	4	Elective - V Discipline Centric	3	3	Skill Enhancement course / Professional Competency Skill	2	4
			Skill Enhancemen t I	2	4	3.6 Skill Enhancemen t II	2	3	Extension Activity	1	
						3.7 Internship/ Industrial Activity	2	-			
	20	30		22	30		26	30		23	30
					Total Cr	edit Points -91					

Choice Based Credit System (CBCS), Learning Outcomes Based Curriculum Framework (LOCF) Guideline Based Credits and Hours Distribution System for all Post – Graduate Courses including Lab Hours

First Year – Semester – I

Part	List of Courses	Credits	No. of
			Hours
	Core – I	5	7
	Core – II	5	7
	Core – III	4	6
	Elective – I	3	5
	Elective – II	3	5
		20	30

Semester-II

Part	List of Courses	Credits	No. of Hours
	Core – IV	5	6
	Core – V	5	6
	Core – VI	4	6
	Elective – III	3	4
	Elective – IV	3	4
	Skill Enhancement Course - I	2	4
		22	30

Second Year – Semester – III

Part	List of Courses	Credits	No. of Hours
	Core – VII	5	6
	Core – VIII	5	6
	Core – IX	5	6
	Core (Industry Module) – X	4	6
	Elective – V	3	3
	Skill Enhancement Course - II	2	3
	Internship / Industrial Activity	2	-
		26	30

Semester-IV

Part	List of Courses	Credits	No. of Hours
	Core – XI	5	6
	Core – XII	5	6
	Project with VIVA VOCE	7	10
	Elective – VI (Industry Entrepreneurship)	3	4
	Skill Enhancement Course – III / Professional Competency Skill	2	4
	Extension Activity	1	-
		23	30

Total 91 Credits for PG Courses

	METHODS OF EVALUATION						
Internal Evaluation	25 Marks						
External Evaluation	Attendance and Class Participation End Semester Examination	75 Marks					
	Total	100 Marks					
	METHODS OF ASSESSMENT						
Remembering (K1)	 The lowest level of questions require stude information from the course content Knowledge questions usually require students information in the textbook. 						
Understanding (K2)	 Understanding of facts and ideas by comprehending organizing, comparing, translating, interpolating and interpreting in their own words. The questions go beyond simple recall and require students to combined at a together 						
Application (K3)	 Students have to solve problems by using/applying a concept learned in the classroom. Students must use their knowledge to determine an exact 						
Analyze (K4)	 Analyzing the question is one of the tasks the students to breakdown something in to its component parts. Analyzing requires students to identify reasons causes or motives and reach conclusions or generalizations. 						
Evaluate (K5)	 Evaluation requires an individual to make something. Questions to be asked to judge the value of character, a work of art, or a solution to a problem. Students are engaged in decision-making a solving. Evaluation questions do not have single right are 	judgment on of an idea, a em. and problem—					
Create (K6)	 The questions of this category challenge stuengaged in creative and original thinking. Developing original ideas and problem solving sk 						

M. Sc., DEGREE PROGRAMME IN PHYSICS PROGRAMME STRUCTURE

FIRST SEMESTER

	NAME OF THE COURSE		S	HRS.		AX RKS
COURSE COMPONENTS			CREDITS	EXAM F	CIA	EXT.
1.1. Core – I	Mathematical Physics	6	5	3	25	75
1.2 Core – II	Classical Mechanics and Relativity	6	5	3	25	75
1.3 Core – III	Linear and Digital ICs and Applications	4	4	3	25	75
1.4 Discipline Centric Elective -I	Choose one from List of Discipline Centric Electives - List I	3	3	3	25	75
1.5 Generic Elective-I:	Choose one from List of Generic Electives	3	3	3	25	75
1.6 Practical	Practical – I Electronics	4	2	3	25	75
		26	22			

SECOND SEMESTER

COURCE	NAME OF THE COURSE		Š	HRS.	MAX MARKS	
COURSE COMPONENTS			CREDIT	EXAM E	CIA	EXT.
2.1. Core – IV	Statistical Mechanics	6	5	3	25	75
2.2 Core – V	Quantum Mechanics –I	6	5	3	25	75
2.3 Core – VI	Practical – II Advanced Experiments	4	2	3	25	75
2.4 Discipline Centric Elective – II	Choose one from the List of Discipline Centric Electives - List 1	3	3	3	25	75
2.5 Generic Elective-II:	Choose one from List of Generic Electives / MOOC course	3	3	3	25	75
2.6 Skill Enhancement Course - I	Choose one from List of SEC	2	2	3	25	75
		24	20			
Value Added Course - I	Choose one from List of VAC	2	2	3	25	75

THIRD SEMESTER

				HRS.		AX RKS
COURSE COMPONENTS	NAME OF COURSE	INST. HRS	CREDIT	EXAM H	CIA	EXT.
3.1. Core – VII	Quantum Mechanics – II	6	5	3	25	75
3.2 Core – VIII	Condensed Matter Physics	4	4	3	25	75
3.3 Core – IX	Electromagnetic Theory	6	5	3	25	75
3.4 Core – X	Numerical Methods and Computer Programming (FOTRAN/C)	4	4	3	25	75
Practical	Practical –III Numerical Methods and Computer Programming (FOTRAN/C)	4	2	3	25	25
3.5 Discipline Centric Elective - III	Choose one from List of Discipline Centric Electives- List 2 / MOOC course	3	3	3	25	75
3.6 Skill Enhancement Course - II	Choose one from the List of SEC	2	2	3	25	75
3.7 Internship/ Industrial Activity	Internship / Industrial Activity [Credits]	-	2	-	-	-
		28	27			
Value Added Course-II	Choose one from List of VAC	2	2	3	25	75

FOURTH SEMESTER

			L	IRS.		AKS
COURSE COMPONENTS	NAME OF COURSE	INST. HRS	CREDIT	EXAM HRS	CIA	EXT.
4.1. Core – XI	Nuclear and Particle Physics	4	4	3	25	75
4.2 Core – XII	Spectroscopy	4	4	3	25	75
4.3 Project	Project with Viva-Voce	12	6	3	25	75
4.4 Elective - IV (Industry / Entrepreneurship)	Choose one from List of Discipline Centric Electives - List 3 / List of Entrepreneurial Electives (20% Theory 80% Practical)	3	3	3	25	75
4.5 Skill Enhancement course / Professional Competency Skill	Choose one from List of SEC	2	2	3	25	75
4.6 Extension Activity	Extension Activity		1		25	75
Practical	Practical – IV Nuclear Physics and Spectroscopy	4	2	3	25	75
		29	22	-	-	-

Consolidation:

Part	Course Components	Credits Distribution	Total
A	Core (Theoretical Courses)	6x5	30
A	Core (Experimental Courses)	5x4	20
A	Core Practical	4x2	8
A	Discipline Centric Elective (DCE)	3x3	9
A	Industrial/Entrepreneurship Elective (IEE)	1x3	3
A	Project	1x8	6
Α	Summer Internship	1x2	2
B 1	Generic Electives (GE)	2x3	6
B2	Skill Enhancement Course(SEC)	3x2	6
C	Extension Activity	1x1	1
	TOTAL		91
Certificate	Value Added Course (VAC)	2x2	4
course			

LIST OF DISCIPLINE CENTRIC ELECTIVE PAPERS (First, Second and Third semester)

List 1 (First Semester)

- 1. Energy Physics
- 2. Crystal Growth and Thin films
- 3. Analysis of Crystal Structures
- 4. Materials Science
- 5. Physics of Nano Science and Technology
- 6. Digital Communication
- 7. Communication Electronics
- 8. Astrophysics

LIST 2 (Second Semester)

- 9. Plasma Physics
- 10. Bio Physics
- 11. Non-linear Dynamics
- 12. Quantum Field Theory
- 13. General Relativity and Cosmology
- 14. Advanced Optics
- 15. Advanced Mathematical Physics

LIST 3 ((INDUSTRY ORIENTED ELECTIVE (IOE)) / MOOC Courses

- 16. Advanced Spectroscopy
- 17. Microprocessor 8086 and Microcontroller 8051
- 18. Characterization of Materials
- 19. Medical Physics
- 20. Solid Waste Management
- 21. Sewage and Waste Water Treatment and Reuse
- 22. Solar Energy Utilization

(**Note:** Institutions can also frame such IOE courses more suitable for their locality.)

LIST OF ENTREPRNEURSHIP ELECTIVES (Fourth Semester)

Twenty percentage of the course content is theory and remaining eighty percent is practical / device fabrication / innovative product / entrepreneurial projects

- 23. Arudino- Applications
- 24. Pic Microcontroller Applications

LIST OF GENERIC ELECTIVES (First and Second Semesters) /MOOC Courses

- 25. Matlab Programming
- 26. Data Analysis and Techniques
- 27. Density Functional Theory
- 28. Material Processing and characterization Techniques
- 29. X-ray Crystallography

LIST OF (SEC) SKILL ENHANCEMENT COURSES (Second, Third and Fourth semesters)

- 30. Powder x-ray diffraction analysis and Rietveld refinement
- 31. NI Labview Applications
- 32. Characterization of Battery, Supercapacitors, and Fuel cell

LIST OF (VAC) VALUE ADDED COURSES (Second and Third semesters)

Value-added courses are certificate courses and the credits earned through them are not included in the 91 credits. These are mandatory extra-credit certificate courses.

- 33. SEM- microstructure analysis and EDS composition analysis
- 34. Single crystal X-ray diffraction analysis with SHELX
- 35. NMR spectral Analysis
- 36. Raman spectral analysis

PASSING MINIMUM

Continuous Internal Assessment (CIA) – No passing minimum End Semester Examination (ESE) – 50% Cumulative Aggregate – 50%

ESE QUESTION PAPER PATTERN for Core theory courses (5 credit theoretical courses)

Part – A 10×1=10	Part- B Either (a) or (b) 5×5=25	Part- C Either (a) or (b) 5×8=40
MCQ	Only problems covered in tutorials	Descriptive type

ESE QUESTION PAPER PATTERN for Core theory courses (4 credit experimental courses)

Part – A	10×1=10	Part- B Either (a) or (b)	5×5=25	Part- C Either (a) or (b)	5×8=40
MCQ		Descriptive		Descriptive type	

CIA QUESTION PAPER PATTERN for all theory courses

Part – A 7×1	=7 Part-	B Any two of three	2×5=10	Part- C Any One of three	1×8=8
MCQ	Only p	roblems covered in tuto ptive	orials /	Descriptive type	

Paper-1 - M	I YEAR - FIRST SEMESTER							
Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	MATHEMATICAL PHYSICS	Core	4	2	-	5	6	75

Pre-Requisites
Knowledge of Matrices, vectors, differentiation, integration, differential equations
Learning Objectives

- To equip students with the mathematical techniques needed for understanding theoretical treatment in different courses taught in their program
- > To extend their manipulative skills to apply mathematical techniques in their fields
- > To help students apply Mathematics in solving problems of Physics

UNITS	Course contents
	Basic concepts - Definitions- examples of vector space - Linear independence -
UNITI:	Scalar product- Orthogonality - Gram-Schmidt orthogonalization procedure -
	linear operators - Dual space- ket and bra notation - orthogonal basis - change
LINEAR	of basis - Isomorphism of vector space - projection operator -Eigen values and
VECTOR SPACE	Eigen functions - Direct sum and invariant subspace - orthogonal
	transformations and rotation
	Review of Complex Numbers -de Moivre's theorem-Functions of a Complex
	Variable- Differentiability -Analytic functions- Harmonic Functions- Complex
UNITII:	Integration- Contour Integration, Cauchy - Riemann conditions - Singular
UNITII:	points - Cauchy's Integral Theorem and integral Formula -Taylor's Series -
COMPLEX	Laurent's Expansion- Zeros and poles – Residue theorem and its Application:
ANALYSIS	Potential theory - (1) Electrostatic fields and complex potentials - Parallel plates,
ANALISIS	coaxial cylinders and an annular region (2) Heat problems - Parallel plates and
	coaxial cylinders
	Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix
UNITIII:	- Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary Matrices -
	Trace of a matrix- Transformation of matrices - Characteristic equation - Eigen
MATRICES	values and Eigen vectors - Cayley–Hamilton theorem –Diagonalization
	Definitions -Fourier transform and its inverse - Transform of Gaussian function
UNITIV:	and Dirac delta function -Fourier transform of derivatives - Cosine and sine
	transforms - Convolution theorem. Application: Diffusion equation: Flow of
FOURIER	heat in an infinite and in a semi - infinite medium - Wave equation: Vibration of
TRANSFORMS	an infinite string and of a semi - infinite string.
&	Laplace transform and its inverse - Transforms of derivatives and integrals -

	Differentiation and integration of transforms - Dirac delta functions - Application - Laplace equation: Potential problem in a semi - infinite strip
UNITV:	Second order differential equation- Sturm-Liouville's theory - Series solution with simple examples - Hermite polynomials - Generating function - Orthogonality properties - Recurrence relations - Legendre polynomials - Generating function - Rodrigue formula - Orthogonality properties - Dirac
DIFFERENTIAL EQUATIONS	delta function- One dimensional Green's function and Reciprocity theorem - Sturm-Liouville's type equation in one dimension & their Green's function.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 George Arfken and Hans J Weber, 2012, Mathematical Methods for Physicists – A Comprehensive Guide (7th edition), Academic press. P.K. Chattopadhyay, 2013, <i>Mathematical Physics</i> (2nd edition), New Age, New Delhi A W Joshi, 2017, Matrices and Tensors in Physics, 4th Edition (Paperback), New Age International Pvt.Ltd., India B. D. Gupta, 2009, <i>Mathematical Physics</i> (4th edition), VikasPublishing House, New Delhi. H. K. Dass and Dr. Rama Verma, 2014, Mathematical Physics, Seventh Revised Edition, S. Chand & Company Pvt. Ltd., New Delhi.
REFERENCEBOO KS	 E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern, New Delhi, D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics, 3rd Ed. Narosa, New Delhi. S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw - Hill, New York 3. E. Butkov, 1968, Mathematical Physics Addison - Wesley, Reading, Massachusetts. P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition, Affiliated EastWest, New Delhi. C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics, 6 th Edition, International Edition, McGraw-Hill, New York
WEB SOURCES	 www.khanacademy.org https://youtu.be/LZnRlOA1_2I http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_R YTEU27vS_SIED56gNjVJGO2qaZ https://archive.nptel.ac.in/courses/115/106/115106086/

At the end of the course the student will be able to:

CO1	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them	K1, K2
CO2	Able to understand analytic functions, do complex integration, by applying	
	Cauchy Integral Formula. Able to compute many real integrals and infinite	K2, K3
	sums via complex integration.	
CO3	Analyze characteristics of matrices and its different types, and the process of	K4
	diagonalization.	
CO4	Solve equations using Laplace transform and analyze the Fourier	K4.
	transformations of different function, grasp how these transformations can	K5
	speed up analysis and correlate their importance in technology	
	To find the solutions for physical problems using linear differential equations	
	and to solve boundary value problems using Green's function. Apply special	K2, K5
	functions in computation of solutions to real world problems	
K1 - R	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

Paper-2 - CLASSICAL MECHANICS A	ND RELATIVITY	I YEAR - FIRST SEMESTER
±		

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	CLASSICAL MECHANICS AND RELATIVITY	Core	4	2	-	5	6	75

Pre-Requisites		
Knowledge offundamentals of mechanics, Foundation in mathematical methods.		
Learning Objectives		

- > To understand fundamentals of classical mechanics.
- > To understand Lagrangian formulation of mechanics and apply it to solve equation of motion.
- > To understand Hamiltonian formulation of mechanics and apply it to solve equation of motion.
- > To discuss the theory of small oscillations of a system.
- > To learn the relativistic formulation of mechanics of a system.

UNITS	Course Contents
UNIT I: PRINCIPLES OF CLASSICAL MECHANICS	Mechanics of a single particle – mechanics of a system of particles – conservation laws for a system of particles – constraints – holonomic & non-holonomic constraints – generalized coordinates – configuration space – transformation equations – principle of virtual work.
UNIT II: LAGRANGIAN FORMULATION	D'Alembert's principle – Lagrangian equations of motion for conservative systems – applications: (i) simple pendulum (ii) Atwood's machine (iii) projectile motion. Central force motion - Kepler problem, scattering in laboratory and centre of mass frames, Rutherford scattering
UNIT III: HAMILTONIAN FORMULATION	Phase space – cyclic coordinates – conjugate momentum – Hamiltonian function – Hamilton's canonical equations of motion – applications: (i) simple pendulum (ii) one dimensional simple harmonic oscillator (iii) motion of particle in a central force field. Symmetry, Invariance and Noether's theorem, principle of least action, canonical transformation – action-angle variables, Poisson brackets,

	Liouville's theorem, Hamiton- Jacobi theory.					
UNIT IV: RIGID BODY DYNAMICS AND SMALL OSCILLATIONS	Rigid body motion - moment of inertia tensor - orthogonal transformation - Euler angles, Torque free motion of a symmetric top. Formulation of the problem – transformation to normal coordinates – frequencies of normal modes – linear triatomic molecule.					
UNIT V: RELATIVITY	Inertial and non-inertial frames – Lorentz transformation equations – length contraction and time dilation – relativistic addition of velocities – Einstein's mass-energy relation – Minkowski's space – four vectors – position, velocity, momentum, acceleration and force in for vector notation and their transformations					
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism					
TEXT BOOKS	 H. Goldstein, 2002, Classical Mechanics, 3rd Edition, Pearson Edu. J. C. Upadhyaya, Classical Mechanics, HimalayaPublshing. Co.New Delhi. R. Resnick, 1968, Introduction to Special Theory of Relativity, Wiley Eastern, New Delhi. R. G. Takwala and P.S. Puranik, Introduction to Classical Mechanics – Tata – McGraw Hill, New Delhi, 1980. N. C. Rana and P.S. Joag, Classical Mechanics – Tata McGraw Hill, 2001 					
REFERENCE BOOKS	 K. R. Symon,1971, Mechanics, Addison Wesley, London. S. N. Biswas, 1999, Classical Mechanics, Books & Allied, Kolkata. Gupta and Kumar, Classical Mechanics, KedarNath. T.W.B. Kibble, Classical Mechanics, ELBS. Greenwood, Classical Dynamics, PHI, New Delhi. 					
WEB SOURCES	 http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanics_Goldst ein_Classical_Mechanics_optimized.pdf https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-2014- editionpdf-pdf-free.html https://nptel.ac.in/courses/122/106/122106027/ https://ocw.mit.edu/courses/physics/8-09-classical-mechanics- iii-fall-2014/lecture-notes/ https://www.britannica.com/science/relativistic-mechanics 					

At the end of the course the student will be able to:

CO1	Understand the fundamentals of classical mechanics.		
CO2	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the		
	equations of motion of physical systems	110	
CO3	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the	K3 K5	
	equations of motion of physical systems.		
CO4	Analyze the small oscillations in systems and determine their normal modes of	VA V	
	OSCILIATIONS		
CO5	Understand and apply the principles of relativistic kinematics to the	K2 K2	
	mechanical systems.	K2, KJ	
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate		

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	2	2
CO2	2	3	3	3	2	2	2	3	2	2
CO3	2	3	3	3	2	2	2	3	2	2
CO4	2	3	3	3	2	2	2	3	2	2
CO5	2	3	3	3	2	2	2	3	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	2

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	LINEAR AND DIGITAL ICs AND APPLICATIONS	Core	4	-	-	4	4	75

Pre-Requisites			
Knowledge of semiconductor devices, basic concepts of digital and analog electronics			
Learning Objectives			

- > To introduce the basic building blocks of linear integrated circuits.
- > To teach the linear and non-linear applications of operational amplifiers.
- > To introduce the theory and applications of PLL.
- > To introduce the concepts of waveform generation and introduce one special function ICs.
- > Exposure to digital IC's

UNITS	Course Contents
UNIT I:	
INTEGRATED	Introduction, Classification of IC's, basic information of Op-Amp 741 and
CIRCUITS AND	its features, the ideal Operational amplifier, Op-Amp internal circuit and
OPERATIONAL	Op-Amp.Characteristics.
AMPLIFIER	
UNIT II: APPLICATIONS OF OP-AMP	LINEAR APPLICATIONS OF OP-AMP: Solution to simultaneous equations and differential equations, Instrumentation amplifiers, V to I and I to V converters. NON-LINEAR APPLICATIONS OF OP-AMP: Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider, Comparators, Schmitt trigger, Multivibrators, Triangular and Square waveform generators.
UNIT III: ACTIVE FILTERS & TIMER AND PHASE	ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd order low pass and high pass filters, band pass, band reject and all pass filters. TIMER AND PHASE LOCKED LOOPS: Introduction to IC 555 timer,

LOCKED LOOPS	description of functional diagram, monostable and astable operations and
	applications, Schmitt trigger, PLL - introduction, basic principle, phase
	detector/comparator, voltage controlled oscillator (IC 566), low pass filter,
	monolithic PLL and applications of PLL
	VOLTAGE REGULATOR: Introduction, Series Op-Amp regulator, IC
UNIT IV:	Voltage Regulators, IC 723 general purpose regulators, Switching
VOLTAGE	Regulator.
REGULATOR &	D to A AND A to D CONVERTERS: Introduction, basic DAC techniques -
D to A AND A to D	weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D
CONVERTERS	converters -parallel comparator type ADC, counter type ADC, successive
	approximation ADC and dual slope ADC, DAC and ADC Specifications.

	CMOS LOGIC:CMOS logic levels, MOS transistors, Basic CMOS						
UNIT V:	Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and OR-						
CMOS LOGIC,	AND-INVERT gates, implementation of any function using CMOS logic.						
COMBINATIONAL	COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study of logic						
CIRCUITS USING	gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC						
TTL 74XX ICs	7485), Decoder (IC 74138, IC 74154), BCD to						
&	7-segment decoder (IC7447), Encoder (IC74147), Multiplexer (IC74151),						
SEQUENTIAL	Demultiplexer (IC 74154).						
CIRCUITS USING	SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC 7474,						
TTL 74XX ICs	IC 7473), Shift Registers, Universal Shift Register (IC 74194), 4- bit						
	asynchronous binary counter (IC 7493).						
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial						
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and						
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism						
	1. D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit,						
	4th edition, New Age International Pvt.Ltd.,NewDelhi,India						
	2. Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated						
	Circuits, 4th edition, Prentice Hall / Pearson Education, NewDelhi.						
	3. B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical						
TEXT BOOKS	technology, S. Chand & Co.						
IEAI BOOKS	4. V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S.						
	Chand & Co, 12th Edition.						
	5. V. Vijayendran, 2008, Introduction to Integrated electronics (Digital						
	& Analog), S.Viswanathan Printers & Publishers Private Ltd,						
	Reprint. V.						
	1. Sergio Franco (1997), Design with operational amplifiers and						
	analog integrated circuits, McGraw Hill, New Delhi.						
REFERENCE	2. Gray, Meyer (1995), Analysis and Design of Analog Integrated						
BOOKS	Circuits, Wiley International, New Delhi.						
	3. Malvino and Leach (2005), Digital Principles and Applications 5th						
	Edition, Tata McGraw Hill, New Delhi						
	Zarron, Tam moran min, non zonn						

	4.	Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson						
		Education, New Delhi.						
	5.	Integrated Electronics, Millman & Halkias, Tata McGraw Hill, 17th						
		Reprint (2000)						
	1.	https://nptel.ac.in/course.html/digital circuits/						
	2.	https://nptel.ac.in/course.html/electronics/operational amplifier/						
	3.	https://www.allaboutcircuits.com/textbook/semiconductors/chpt-						
WEB SOURCES		7/field-effect-controlled-thyristors/						
	4.	https://www.electrical4u.com/applications-of-op-amp/						
	5.	https://www.geeksforgeeks.org/digital-electronics-logic-design-						
		tutorials/						

At the end of the course the student will be able to:

CO1	Learn about the basic concepts for the circuit configuration for the design of linear	V1 V5							
	integrated circuits and develops skill to solve problems								
CO2	Develop skills to design linear and non-linear applications circuits using Op-Amp	W3							
	and design the active filters circuits								
CO3	Gain knowledge about PLL, and develop the skills to design the simple circuits	V1 V3							
	using IC 555 timer and can solve problems related to it.	K1, K3							
CO4	Learn about various techniques to develop A/D and D/A converters.	K2							
CO5	Acquire the knowledge about the CMOS logic, combinational and sequential	IZ1 IZ4							
	circuits	IX1, IX4							
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate									

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1

CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

Paper 4 - PRACTICAL I I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	Electronics	Core	-	-	4	2	4	75

Pre-Requisites

Knowledge and hands on experience of basic general and electronics experiments of Physics

Learning Objectives

- ➤ To measure the characteristics of the discrete components
- > To construct various application of op-amp IC 741
- To calculate the thermodynamic quantities and physical properties of materials.
- ➤ To implement simple program in microprocessor.

Course Details

(Minimum of Ten Experiments from the list)

- 1. Construction of relaxation oscillator using UJT
- 2. FET CS amplifier- Frequency response, input impedance, output impedance
- 3. Study of important electrical characteristics of IC741.
- 4. V- I Characteristics of different colours of LED.
- 5. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- 6. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.
- 7. Construction of Schmidt triggers circuit using IC 741 for a given hysteresis- application as squarer.
- 8. Construction of square wave Triangular wave generator using IC 741
- 9. Construction of a quadrature wave using IC 324
- 10. Construction of pulse generator using the IC 741 application as frequency divider
- 11. Study of R-S, clocked R-S and D-Flip flop using NAND gates
- 12. Study of J-K, D and T flip flops using IC 7476/7473
- 13. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction.
- 14. Study of Arithmetic logic unit using IC 74181.
- 15. Op-Amp Inverting and Non-inverting amplifier and Unity follower
- 16. Op-Amp Summing and difference amplifier
- 17. Op-Amp Phase shift oscillator
- 18. Op-Amp Wien's bridge oscillator
- 19. Op-Amp Astable multivibrator

- 20. Op-Amp Monostable vibrator
- 21. 555 Timer Schmitt trigger
- 22. 555 Timer Astable operation
- 23. 555 Timer Monastable operation
- 24. Construction of square wave generator using IC 555 Study of VCO
- 25. Study of Binary to Gray and Gray to Binary code conversion.
- 26. Construction of Encoder and Decoder circuits using ICs.
- 27. Study of synchronous parallel 4-bit binary up/down counter using IC 74193
- 28. Study of asynchronous parallel 4-bit binary up/down counter using IC 7493
- 29. Study of Modulus Counter
- 30. Construction of Multiplexer and Demultiplexer using ICs.
- 31. 8-bit addition and subtraction, multiplication and division using microprocessor 8085
- 32. Sum of a set of N data (8-bit number), picking up the smallest and largest number in an array. Sorting in ascending and descending orderusing microprocessor 8085
- 33. Code conversion (8-bit number): a) Binary to BCD b) BCD to binaryusing microprocessor 8085
- 34. Addition of multi byte numbers, Factorialusing microprocessor 8085
- 35. Clock program- 12/24 hours-Real time application Six Digits Hexa Decimal and Decimal Counters using microprocessor 8085
- 36. Interfacing of LED Binary up/down counter, BCD up/down counter and N/2N up/down counter using microprocessor 8085
- 37. Interfacing of seven segment display using microprocessor 8085
- 38. Interfacing of 8-bit R / 2R ladder DAC (IC 741) Wave form generation Square, Rectangular, Triangular, Saw tooth and Sine waves using microprocessor 8085
- 39. Interfacing of DC stepper motor Clockwise, Anti-clockwise, Angular movement and Wiper action using microprocessor 8085
- 40. Interfacing of Temperature Controller and Measurementusing microprocessor 8085
- 41. Interfacing of Traffic light controller using microprocessor 8085

	1. Practical Physics and Electronic, C.C> Ouseph, U.J. Rao and									
	V.Vijendran, Ananda Book Depot, (2021) Reprint									
	2. Practical Physics, Gupta and Kumar, PragatiPrakasan.									
	3. Kit Developed for doing experiments in Physics- Instruction manual,									
	R.Srinivasan K.R Priolkar, Indian Academy of Sciences.									
TEXT BOOKS	4. Electronic Laboratory Primer a design approach, S. Poornachandra,									
	B.Sasikala, Wheeler Publishing, New Delhi.									
	5. Electronic lab manual Vol I, K ANavas, Rajath Publishing.									
	6. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition									
	1. Advanced Practical Physics, S.P Singh, PragatiPrakasan.									
REFERENCE	2. An advanced course in Practical Physics, D.Chattopadhayay, C.R									
BOOKS	Rakshit, New Central Book Agency Pvt. Ltd									
	3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern									
	Economy Edition.									

- 4. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Ltd.
- 5. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing.

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus.	K2								
CO2	Acquire knowledge of thermal behaviour of the materials.	K1								
CO3	Understand theoretical principles of magnetism through the experiments.	K2								
CO4	Acquire knowledge about arc spectrum and applications of laser	K1, K3								
CO5	Improve the analytical and observation ability in Physics Experiments	K3, K5								
CO6	Conduct experiments on applications of FET and UJT	K4								
CO7	Analyze various parameters related to operational amplifiers.	K 4								
CO8	Understand the concepts involved in arithmetic and logical circuits using IC's	K2								
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	K1								
CO10	Analyze the applications of counters and registers	K4								
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate									

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2

CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	STATISTICAL MECHANICS	Core	4	2	1	5	6	75

Pre-Requisites

Knowledge of Laws of thermodynamics, phase transition, entropy, ensembles, partition function, classical and quantum statistics, thermal equilibrium, Brownian motion

Learning Objectives

- ➤ To acquire the knowledge of thermodynamic potentials and to understand phase transition in thermodynamics
- > To identify the relationship between statistic and thermodynamic quantities
- > To comprehend the concept of partition function, canonical and grand canonical ensembles
- > To grasp the fundamental knowledge about the three types of statistics
- ➤ To get in depth knowledge about phase transitions and fluctuation of thermodynamic properties that vary with time

UNITS	Course Details						
	Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule -						
UNIT I:	Phase transitions and Ehrenfest's classifications -Third law of						
PHASE	Thermodynamics. Order parameters – Landau's theory of phase						
TRANSITIONS	transition - Critical indices - Scale transformations and dimensional						
	analysis.						

UNIT II:	Foundations of statistical mechanics - Specification of states of a
STATISTICAL	system - Micro canonical ensemble - Phase space - Entropy -
MECHANICS AND	Connection between statistics and thermodynamics – Entropy of an
THERMODYNAMICS	ideal gas using the micro canonical ensemble - Entropy of mixing and
	Gibb's paradox.
UNIT III: CANONICAL AND GRAND CANONICAL ENSEMBLES	Trajectories and density of states - Liouville's theorem - Canonical and grand canonical ensembles - Partition function - Calculation of statistical quantities - Energy and density fluctuations.
UNIT IV:	Density matrix - Statistics of ensembles - Statistics of indistinguishable
CLASSICAL AND	particles - Maxwell-Boltzmann statistics - Fermi-Dirac statistics - Ideal
QUANTUM	Fermi gas - Degeneracy - Bose-Einstein statistics - Plank radiation
STATISTICS	formula - Ideal Bose gas - Bose-Einstein condensation.

UNIT V: REAL GAS, ISING MODEL AND FLUCTUATIONS	Cluster expansion for a classical gas - Virial equation of state - Calculation of the first Virial coefficient in the cluster expansion - Ising model - Mean-field theories of the Ising model in three, two and one dimensions - Exact solutions in onedimension. Correlation of space-time dependent fluctuations - Fluctuations and transport phenomena - Brownian motion - Langevin's theory - Fluctuation-dissipation theorem - The Fokker-Planck equation
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 S. K. Sinha, 1990, Statistical <i>Mechanics</i>, Tata McGraw Hill, New Delhi. B. K. Agarwal and M. Eisner, 1998, <i>Statistical Mechanics</i>, Second Edition New Age International, New Delhi. J. K. Bhattacharjee, 1996, <i>Statistical Mechanics</i>: An Introductory Text, Allied Publication, New Delhi. F. Reif, 1965, <i>Fundamentals of Statistical and Thermal Physics</i>, McGraw - Hill, New York. M. K. Zemansky, 1968, <i>Heat and Thermodynamics</i>, 5th edition, McGraw-Hill New York.
REFERENCE BOOKS	 R. K. Pathria, 1996, Statistical Mechanics, 2nd edition, Butter WorthHeinemann, New Delhi. L. D. Landau and E. M. Lifshitz, 1969, Statistical Physics, Pergamon Press, Oxford. K. Huang, 2002, Statistical Mechanics, Taylor and Francis, London W. Greiner, L. Neiseand H.Stoecker, Thermodynamics and Statistical Mechanics, Springer Verlang, New York. A. B. Gupta, H. Roy, 2002, Thermal Physics, Books and Allied, Kolkata.

	1. https://byjus.com/chemistry/third-law-of-thermodynamics/
	2. https://web.stanford.edu/~peastman/statmech/thermodynamics.html
WEB SOURCES	3. https://en.wikiversity.org/wiki/Statistical mechanics and thermodynamics
	4. https://en.wikipedia.org/wiki/Grand canonical ensemble
	5. https://en.wikipedia.org/wiki/Ising model

At the end of the course the student will be able to:

CO1	To examine and elaborate the effect of changes in thermodynamic quantities on	V5					
	the states of matter during phase transition	IXS					
CO ₂	To analyze the macroscopic properties such as pressure, volume, temperature,						
	specific heat, elastic moduli etc. using microscopic properties like intermolecular						
	forces, chemical bonding, atomicity etc.	K4					
	Describe the peculiar behaviour of the entropy by mixing two gases						
	Justify the connection between statistics and thermodynamic quantities						
CO3 Differentiate between canonical and grand canonical ensembles and to interpre							
	the relation between thermodynamical quantities and partition function						
CO4	To recall and apply the different statistical concepts to analyze the behaviour of	TZ A					
	ideal Fermi gas and ideal Bose gas and also to compare and distinguish between	IX4, IZ <i>E</i>					
	the three types of statistics						
CO5	To discuss and examine the thermodynamical behaviour of gases under	1/2					
	fluctuation and also using Ising model	K)					
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate						

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3

CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

Paper 6 - QUANTUM MECHANICS – I	I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks	
	QUANTUM MECHANICS – I	Core	4	2	-	5	6	75	

Pre-Requisites

Knowledge of Newton's laws of motion, Schrodinger's equation, integration, differentiation.

Learning Objectives

- > To develop the physical principles and the mathematical background important to quantum mechanical descriptions.
- > To describe the propagation of a particle in a simple, one-dimensional potential.
- ➤ To formulate and solve the Schrodinger's equation to obtain eigenvectors and energies for particle in a three-dimensional potential.
- > To explain the mathematical formalism and the significance of constants of motion, and see their relation to fundamental symmetries in nature
- ➤ To discuss the Approximation methods like perturbation theory, Variational and WKB methods for solving the Schrödinger equation.

UNITS	Course Details					
	Interpretation of the wave function – Time dependent Schrodinger equation –					
UNIT I:	Time independent Schrodinger equation – Stationary states – Ehrenfest's					
BASIC	theorem – Linear vector space – Linear operator – Eigen functions and Eigen					
FORMALISM	Values - Hermitian Operator - Postulates of Quantum Mechanics -					
	Simultaneous measurability of observables – General Uncertainty relation					
UNIT II:ONE	Square – well potential with rigid walls – Square well potential with finite					
DIMENSIONAL	walls - Square potential barrier - Alpha emission - Bloch waves in a					
AND THREE-						
DIMENSIONAL	periodic potential – Kronig-penny square – well periodic potential – Linear					
ENERGY EIGEN	harmonic oscillator: Operator method – Particle moving in a spherically					
VALUE	symmetric potential – System of two interacting particles – Hydrogen atom –					
PROBLEMS	Rigid rotator					
	Dirac notation - Equations of motions - Schrodinger representation -					

UNIT III:	Heisenberg representation – Interaction representation – Coordinate						
GENERAL	representation – Momentum representation – Symmetries and conservation						
FORMALISM	aws – Unitary transformation – Parity and time reversal						

	Time independent perturbation theory for non-degenerate energy levels –
UNIT IV:	Degenerate energy levels – Stark effect in Hydrogen atom – Ground and
APPROXIMATIO	excited state – Variation method – Helium atom – WKB approximation –
N METHODS	
	Connection formulae (no derivation) – WKB quantization – Application to
	simple harmonic oscillator.
UNIT V:	Eigenvalue spectrum of general angular momentum – Ladder operators and
ANGULAR	their algebra – Matrix representation – Spin angular momentum – Addition
	of angular momenta – CG Coefficients – Symmetry and anti – symmetry of
MOMENTUM	wave functions - Construction of wave-functions and Pauli's exclusion
	principle.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
COMITONENTS	1. P. M. Mathews and K. Venkatesan, A Text book of Quantum
	Mechanics, 2 nd edition(37th Reprint), Tata McGraw-Hill, New Delhi,
	2010.
	2. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of
	India, New Delhi, 2009.
	3. David J Griffiths, Introduction to Quantum Mechanics. 4th edition,
TEXT BOOKS	Pearson, 2011.
	4. SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1 st
	Edition, S.Chand& Co., New Delhi, 1982.
	5. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and
	Applications, 4 th Edition, Macmillan, India, 1984.
	1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and
	Sons, New York, 1970.
	2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern
	Ltd, New Delhi, 1985.
REFERENCE	3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition,
BOOKS	Pergomon Press, Oxford, 1976.
	4. S. N. Biswas, Quantum Mechanics, Books and Allied Ltd., Kolkata,
	1999.
	5. V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science
	International Ltd, Oxford, 2011.
WED COUDCES	1. http://research.chem.psu.edu/lxjgroup/download_files/chem565-
WEB SOURCES	c7.pdf
	2. http://www.feynmanlectures.caltech.edu/III_20.html

	3.	http://web.mit.edu/8.05/handouts/jaffe1.pdf
	4.	https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_Lectures/
		Lecture 1.pdf
	5.	https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf

At the end of the course the student will be able to:

CO1	Demonstrates a clear understanding of the basic postulates of quantum						
	mechanics which serve to formalize the rules of quantum						
	Mechanics						
CO2	Is able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems	K3, K4					
	Can discuss the various representations, space time symmetries and formulations of time evolution	K1					
	•	K5					
CO5	To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting.	K3, K4					
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate						

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

Paper 7 - PRACTICAL II I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	Advanced Experiments	Core	1	-	4	2	4	75

Pre-Requisites

Knowledge and handling of basic general and electronics experiments of Physics

Learning Objectives

- > To understand the concept of solid state behavior of materials and calculation of same using appropriate equations.
- > To calculate the thermodynamic quantities and physical properties of materials.
- To analyze the magnetic and electrical properties of materials.

Course Details

(Minimum of Ten Experiments from the list)

- 1. Determination of Young's modulus and Poisson's ratio by Elliptical fringes Cornu's Method
- 2. Determination of Stefan's constant of radiation from a hot body
- 3. Measurement of Susceptibility of liquid Quincke's method
- 4. B-H curve using CRO
- 5. Thickness of LG Plate
- 6. Arc spectrum: Copper
- 7. Determination of e/m Millikan's method
- 8. Miscibility measurements using ultrasonic diffraction method
- 9. Determination of Thickness of thin film. Michelson Interferometer
- 10. Iodine absorption spectra
- 11. Indexing the XRD patterns of cubic metallic systems of sc, bcc and fcc
- 12. Calculation of structure factor for NaCl
- 13. Plotting the first Brillouin zone for Si
- 14. Measurement of thermal conductivity of solids

- 15. Measurement of Hall voltage and mobility of Ge crystal
- 16. Calculate and visualization of Fermi surface
- 17. Measurement of Bandgap of the given crystal using four probe method
- 18. Measurement of specific heat of solids
- 19. Measurement of M-H curves to get coercivity, saturation and remnant magnetization of soft and hard magnetic materials
- 20. Measurement of magnetic moment per formula unit of soft and hard magnetic materials
- 21. Measurement of magnetic susceptibility of solids using Guoy balance method
- 22. Measurement of magnetic susceptibility of liquids using Quinke's method
- 23. Determination of Numerical Apertures and Acceptance angle of optical fibers using Laser Source.
- 24. Measurement of Dielectricity Microwave test bench
- 25. Hall Effect in Semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility
- 26. Interpretation of vibrational spectra of a given material
- 27. Determination of I-V Characteristics and efficiency of solar cell
- 28. Any other experiments

	Practical Physics, Gupta and Kumar, PragatiPrakasan
	2. Kit Developed for doing experiments in Physics- Instruction manual,
TEXT BOOKS	R.Srinivasan K.R Priolkar, Indian Academy of Sciences
	3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern
	Economy Edition.
	4. Electronic lab manual Vol I, K ANavas, Rajath Publishing
	5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition
	1. An advanced course in Practical Physics, D.Chattopadhayay,
	C.RRakshit, New Central Book Agency Pvt. Ltd
	2. Advanced Practical Physics, S.P Singh, PragatiPrakasan
REFERENCE	3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley &
BOOKS	Sons (Asia) Pvt.ltd
DOOKS	4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya
	Publishing
	5. Electronic Laboratory Primer a design approach, S. Poornachandra,
	B.Sasikala, Wheeler Publishing, New Delhi

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus	K2	l
-----	---	----	---

CO2	Acquire knowledge of thermal behaviour of the materials	K1							
CO3	Understand theoretical principles of magnetism through the experiments.	K2							
CO4	Acquire knowledge about arc spectrum and applications of laser	K1							
CO5	Improve the analytical and observation ability in Physics Experiments	K4							
CO6	Conduct experiments on applications of FET and UJT	K5							
CO7	Analyze various parameters related to operational amplifiers	K4							
CO8	Understand the concepts involved in arithmetic and logical circuits using IC's	K2							
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	K3							
CO10	Analyze the applications of counters and registers	K4							
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate								

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	S	S	2	2	2	3	3
CO2	2	2	S	S	S	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	S	S	2	2	2	3	3
CO7	2	2	S	S	S	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Paper 8 - QUANTUM MECHANICS – II	II YEAR - THIRD SEMESTER
----------------------------------	--------------------------

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	QUANTUM MECHANICS – II	Core	4	2	-	5	6	75

Pre-Requisites

Knowledge of postulates of Quantum mechanics, properties of Hermitian operators, ladder operators, degeneracy, angular momentum techniques and commutation rules

Learning Objectives

- Formal development of the theory and the properties of angular momenta, both orbital and spin
- ➤ To familiarize the students to the crucial concepts of scattering theory such as partial wave analysis and Barn approximation.
- > Time-dependent Perturbation theory and its application to study of interaction of an atom with the electromagnetic field
- > To give the students a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related concepts
- > To introduce the concept of covariance and the use of Feynman graphs for depicting different interactions

UNITS	Course Details						
	Scattering amplitude – Cross sections – Born approximation and its validity						
UNIT 1:	- Scattering by a screened coulomb potential - Yukawa potential - Partial						
SCATTERING	TTERING wave analysis – Scattering length and Effective range theory for s wave						
THEORY	Optical theorem – Transformation from centre of mass to laboratory frame.						
	Time dependent perturbation theory – Constant and harmonic perturbations						
UNIT II:	– Fermi Golden rule – Transition probability Einstein's A and B						
PERTURBATION	Coefficients – Adiabatic approximation – Sudden approximation – Semi –						
THEORY	classical treatment of an atom with electromagnetic radiation – Selection						
	rules for dipole radiation						
UNIT III:	Klein – Gordon Equation – Charge And Current Densities – Dirac Matrices						
RELATIVISTIC	- Dirac Equation - Plane Wave Solutions - Interpretation Of Negative						

QUANTUM	Energy States – Antiparticles – Spin of Electron – Magnetic Moment Of An					
MECHANICS	Electron Due To Spin					
UNIT IV:	Covariant form of Dirac Equation - Properties of the gamma matrices -					
DIRAC	DIRAC Traces – Relativistic invariance of Dirac equation – Probability Density					
EQUATION	Current four vector - Bilinear covariant - Feynman's theory of positron					
	(Elementary ideas only without propagation formalism)					

UNIT V:								
CLASSICAL	Classical fields – Euler Lagrange equation – Hamiltonian formulation –							
	Noether's theorem – Quantization of real and complex scalar fields –							
FIELDS AND	Creation, Annihilation and Number operators - Fock states - Second							
SECOND	Quantization of K-G field.							
QUANTIZATION								
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial							
PROFESSIONAL	nteractions/Visits, Competitive Examinations, Employable and							
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism							
	1. P. M. Mathews and K. Venkatesan, A Text book of Quantum							
	Mechanics,2nd Edition,Tata McGraw-Hill, New Delhi, 2010.							
	2. G. Aruldhas, Quantum Mechanics, 2nd Edition, Prentice-Hall of							
	India, NewDelhi,2009							
	3. L. I. Schiff, Quantum Mechanics, 3rd Edition, International Student							
TEXT BOOKS	Edition, McGraw-Hill Kogakusha, Tokyo, 1968							
	4. V. Devanathan, Quantum Mechanics, 1st Edition, Narosa							
	Publishing House, New Delhi, 2005.							
	5. NouredineZettili, Quantum mechanics concepts and applications,							
	2nd Edition, Wiley, 2017							
	1. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th							
	Edition,Oxford University Press, London, 1973.							
	2. B.K.Agarwal & HariPrakash, Quantum Mechanics, 7th reprint, PHI							
	Learning Pvt. Ltd., New Delhi, 2009.							
REFERENCE	3. Deep Chandra Joshi, Quantum Electrodynamics and Particle							
BOOKS	Physics, 1 st edition, I.K. International Publishing house Pvt. Ltd., 2006							
DOOKS	4. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and							
	Applications, 4 th Edition, Macmillan India, New Delhi.							
	5. E. Merzbacher, Quantum Mechanics, 2nd edition, John Wiley and							
	Sons, New York, 1970							
	1. https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-							
	2013/lecture notes/MIT8_05F13_Chap_09.pdf							
	2. http://www.thphys.nuim.ie/Notes/MP463/MP463_Ch1.pdf							
WEB SOURCES	3. http://hep.itp.tuwien.ac.at/~kreuzer/qt08.pdf							
	4. https://www.cmi.ac.in/~govind/teaching/rel-qm-rc13/rel-qm-notes-							
	gk.pdf							
	5. https://web.mit.edu/dikaiser/www/FdsAmSci.pdf							

At the end of the course the student will be able to:

CO1	Familiarize the concept of scattering theory such as partial	K1					
	wave analysis and Born approximation						
CO ₂	Give a firm grounding in relativistic quantum mechanics, with emphasis on	K)					
	Dirac equation and related concepts	KZ					
CO3	Discuss the relativistic quantum mechanical equations namely, Klein-Gordon						
	and Dirac equations and the phenomena accounted by them like electron spin	K1, K4					
	and magnetic moment						
CO4	Introduce the concept of covariance and the use of Feynman graphs for	K1,					
	depicting different interactions	K3					
CO5	Demonstrate an understanding of field quantization and the explanation of the	K5					
	scattering matrix.	N2					
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate						

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3	3
CO3	3	2	2	3	3	2	3	3	3	3
CO4	2	1	1	3	3	1	2	2	3	3
CO5	2	1	1	3	3	2	2	2	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3	3
CO3	3	2	2	3	3	2	3	3	3	3
CO4	2	1	1	3	3	1	2	2	3	3
CO5	2	1	1	3	3	2	2	2	3	3

Paper 9 - CONDENSED MATTER PHYSICS	II YEAR - THIRD SEMESTER
------------------------------------	--------------------------

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	CONDENSED MATTER PHYSICS	Core	4	1	-	4	4	75

Pre-Requisites					
Basic knowledge of atomic physics, quantum mechanics and statistical mechanics.					
Learning Objectives					
To describe various ervetal structures symmetry and to differentiate different types of					

- ➤ To describe various crystal structures, symmetry and to differentiate different types of bonding.
- > To construct reciprocal space, understand the lattice dynamics and apply it to concept of specific heat.
- > To critically assess various theories of electrons in solids and their impact in distinguishing solids.
- > Outline different types of magnetic materials and explain the underlying phenomena.
- ➤ Elucidation of concepts of superconductivity, the underlying theories relate to current areas of research.

UNITS	Course Details					
UNIT I: CRYSTAL PHYSICS	Types of lattices - Miller indices - Symmetry elements and allowed rotations - Simple crystal structures - Atomic Packing Factor- Crystal diffraction - Bragg's law - Scattered Wave Amplitude - Reciprocal Lattice (sc, bcc, fcc). Structure and properties of liquid crystals. Diffraction Conditions - Laue equations - Brillouin zone - Structure factor - Atomic form factor - Inert gas crystals - Cohesive energy of ionic crystals - Madelung constant - Types of crystal binding (general ideas).					
UNIT II: LATTICE DYNAMICS	TTICE phase velocities - Quantization of lattice vibrations - Phonon momentum - Inelastic scattering by phonons - Debye's theory of lattice heat canacity -					
UNIT III: THEORY OF METALS AND SEMICONDUCTORS	Free electron gas in three dimensions - Electronic heat capacity - Wiedemann- Franz law - Band theory of metals and semiconductors - Bloch theorem - Kronig-Penney model - Semiconductors - Intrinsic carrier concentration - Temperature Dependence - Mobility - Impurity conductivity - Impurity states					
UNIT IV: MAGNETISM	Diamagnetism - Quantum theory of paramagnetism - Rare earth ion - Hund's rule - Quenching of orbital angular momentum - Adiabatic demagnetization - Quantum theory of ferromagnetism - Curie point - Exchange integral - Heisenberg's interpretation of Weiss field - Ferromagnetic domains - Bloch					

 wall -	Spin waves - (Quantiz	zation - Magnon	ıs - T	hermal excitati	ion	of magnor	ns -
	1		susceptibility	of	ferrimagnets	-	Theory	of
antifer	omagnetism - l	Neel te	emperature.					

	Experimental facts: Occurrence - Effect of magnetic fields - Meissner effect -					
	Critical field - Critical current - Entropy and heat capacity - Energy gap -					
	Microwave and infrared properties - Type I and II Superconductors.					
UNIT V:	Theoretical Explanation: Thermodynamics of super conducting transition -					
Superconductivity	London equation - Coherence length - Isotope effect - Cooper pairs - Bardeen					
	Cooper Schrieffer (BCS) Theory – BCS to Bose – Einstein Condensation (BEC)					
	regime- Nature of paring and condensation of Fermions. Single particle tunneling -					
	Josephson tunneling - DC and AC Josephson effects - High temperature Superconductors - SQUIDS.					
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,					
PROFESSIONAL	Competitive Examinations, Employable and Communication Skill Enhancement,					
COMPONENTS	Social Accountability and Patriotism					
COM OTHER						
	1. C. Kittel, 1996, <i>Introduction to SolidState Physics</i> , 7 th Edition, Wiley, New York.					
	2. Rita John, Solid State Physics, Tata Mc-GrawHill					
	Publication.					
TENT DOOM	3. A. J. Dekker, <i>SolidState Physics</i> , Macmillan India, New Delhi.					
TEXT BOOKS	4. M. Ali Omar, 1974, Elementary SolidState Physics – Principles					
	and Applications, Addison - Wesley					
	5. H. P. Myers, 1998, <i>Introductory SolidState Physics</i> , 2 nd Edition,					
	Viva Book, New Delhi.					
	1. J. S. Blakemore, 1974, <i>Solid state Physics</i> , 2 nd Edition, W.B. Saunder,					
	Philadelphia 2. H. M. Rosenburg, 1993, <i>The SolidState</i> , 3 rd Edition, OxfordUniversity Press,					
	Oxford.					
REFERENCE	3. J. M. Ziman, 1971, Principles <i>of the Theory of Solids</i> , CambridgeUniversity					
BOOKS	Press, London.					
	4. C. Ross-Innes and E. H. Rhoderick, 1976, <i>Introduction to Superconductivity</i> ,					
	Pergamon, Oxford.					
	5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice-Hall of India,					
	New Delhi.					
	1. http://www.physics.uiuc.edu/research/electronicstructure/389/389-					
	<u>cal.html</u>					
WEB SOURCES	2. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html					
	3. https://www.britannica.com/science/crystal					
	 https://www.nationalgeographic.org/encyclopedia/magnetism/ https://www.brainkart.com/article/Super-Conductors 6824/ 					
	3. https://www.uranikart.com/articit/bupti-conductors_0024/					

At the end of the course, the student will be able to:

	Student will be able to list out the crystal systems, symmetries allowed in system and also the diffraction techniques to find the crystal structure					
CO2	Students will be able to visualize the idea of reciprocal spaces, Brillouin Zone and their extension to band theory of solids.	K1, K2				
	Student will be able to comprehend the heat conduction in solids	К3				
CO5	Student can compare and contrast the various types of magnetism and conceptualize the idea of superconductivity.	K5				
	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate					

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	2	2	2	2	2	2	2
CO2	3	2	3	2	3	2	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	2	2	2	2	2	2	2	2	2	3
CO5	2	2	2	2	2	2	2	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	2	2	2	2	2	2	2
CO2	3	2	3	2	3	2	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	2	2	2	2	2	2	2	2	2	3
CO5	2	2	2	2	2	2	2	2	2	3

Paper 10 - ELECTROMAGNETIC THEORY II YEAR - THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	ELECTROMAGNETIC THEORY	Core	4	2	1	5	6	75

Pre-Requisites

Knowledge of different coordinate systems, Laplace's equation, conducting & non-conducting medium, basic definitions in magnetism, propagation of electromagnetic waves, plasma

- > To acquire knowledge about boundary conditions between two media and the technique of method of separation of variables
- ➤ To understand Biot Savart's law and Ampere's circuital law
- ➤ To comprehend the physical ideas contained in Maxwell's equations, Coulomb & Lorentz gauges, conservation laws
- > To assimilate the concepts of propagation, polarization, reflection and refraction of electromagnetic waves
- > To grasp the concept of plasma as the fourth state of matter

UNITS	Course Details
	Boundary value problems and Laplace equation – Boundary conditions
	and uniqueness theorem - Laplace equation in three dimension -
UNIT I:	Solution in Cartesian and spherical polar coordinates – Examples of
ELECTROSTATICS	solutions for boundary value problems.
ELECTROSTATICS	Polarization and displacement vectors - Boundary conditions - Dielectric
	sphere in a uniform field - Molecular polarizability and electrical
	susceptibility - Electrostatic energy in the presence of dielectric -
	Multipole expansion.
	Biot-Savart's Law - Ampere's law - Magnetic vector potential and
UNIT II:	magnetic field of a localized current distribution - Magnetic moment,
MAGNETOSTATICS	force and torque on a current distribution in an external field - Magneto
	static energy - Magnetic induction and magnetic field in macroscopic
	media - Boundary conditions - Uniformly magnetized sphere.
	Faraday's laws of Induction - Maxwell's displacement current -
UNIT III:	Maxwell's equations - Vector and scalar potentials - Gauge invariance -
MAXWELL	Wave equation and plane wave solution- Coulomb and Lorentz gauges -
EQUATIONS	Energy and momentum of the field - Poynting's theorem - Lorentz force -
	Conservation laws for a system of charges and electromagnetic fields.

UNIT IV: WAVE PROPAGATION	Plane waves in non-conducting media - Linear and circular polarization, reflection and refraction at a plane interface - Waves in a conducting medium - Propagation of waves in a rectangular wave guide. Inhomogeneous wave equation and retarded potentials - Radiation from a localized source - Oscillating electric dipole
UNIT V: ELEMENTARY PLASMA PHYSICS	The Boltzmann Equation - Simplified magneto-hydrodynamic equations - Electron plasma oscillations - The Debye shielding problem - Plasma confinement in a magnetic field - Magneto-hydrodynamic waves - Alfven waves and magnetosonic waves.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 D. J. Griffiths, 2002, Introduction to Electrodynamics, 3rd Edition, Prentice-Hall of India, New Delhi. J. R. Reitz, F. J. Milford and R. W. Christy, 1986, Foundations of Electromagnetic Theory, 3rd edition, Narosa Publishing House, New Delhi. J. D. Jackson, 1975, Classical Electrodynamics, Wiley Eastern Ltd. New Delhi. J. A. Bittencourt, 1988, Fundamentals of Plasma Physics, Pergamon Press, Oxford. Gupta, Kumar and Singh, Electrodynamics, S.Chand & Co., New Delhi
REFERENCE BOOKS	 W. Panofsky and M. Phillips, 1962, Classical Electricity and Magnetism, Addison Wesley, London. J. D. Kraus and D. A. Fleisch, 1999, Electromagnetics with Applications, 5th Edition, WCB McGraw-Hill, New York. B. Chakraborty, 2002, Principles of Electrodynamics, Books and Allied, Kolkata. P. Feynman, R. B. Leighton and M. Sands, 1998, The Feynman Lectures on Physics, Vols. 2, Narosa Publishing House, New Delhi. Andrew Zangwill, 2013, Modern Electrodynamics, Cambridge University Press, USA.
WEB SOURCES	http://www.plasma.uu.se/CED/Book/index.html http://www.thphys.nuim.ie/Notes/electromag/frame-notes.html http://www.thphys.nuim.ie/Notes/em-topics/em-topics.html http://dmoz.org/Science/Physics/Electromagnetism/Courses and Tutorials/ https://www.cliffsnotes.com/study-guides/physics/electricity-and-magnetism/electrostatics

At the end of the course the student will be able to:

CO1	Solve the differential equations using Laplace equation and to find solutions for	V1 V5
	boundary value problems	
CO ₂	Use Biot-Savart's law and Ampere circuital law to find the magnetic induction &	K2 K3
	magnetic vector potential for various physical problems	
CO3	Apply Maxwell's equations to describe how electromagnetic field behaves in	K3
	different media	IXJ
CO4	Apply the concept of propagation of EM waves through wave guides in optical fiber	
	communications and also in radar installations, calculate the transmission and	K3, K4
	reflection coefficients of electromagnetic waves	
CO5	Investigate the interaction of ionized gases with self-consistent electric and	K5
	magnetic fields	KS
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

Paper 11 - NUMERICAL METHODS AND	II YEAR – THIRD SEMESTER
COMPUTER PROGRAMMING	

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	NUMERICAL METHODS AND COMPUTER PROGRAMMING	Core	4	1	-	4	4	75

Pre-Requisites			
Prior knowledge on computer and basic mathematics			
Learning Objectives			
> To make students to understand different numerical approaches to solve a problem.			
To understand the basics of programming			

UNITS	Course Details
UNIT I: SOLUTIONS OF EQUATIONS	Zeros or Roots of an equation - Non-linear algebraic equation and transcendental equations - Zeros of polynomials -Roots of polynomials, nonlinear algebraic equations and transcendental equations using Bisection and Newton-Raphson methods - Convergence of solutions in Bisection and Newton-Raphson methods - Limitations of Bisection and Newton-Raphson methods.
UNIT II: LINEAR SYSTEM OF EQUATIONS	Simultaneous linear equations and their matrix representation—Inverse of a Matrix – Solution of simultaneous equations by Matrix inversion method and its limitations – Gaussian elimination method – Gauss Jordan method – Inverse of a matrix by Gauss elimination method - Eigen values and eigenvectors of matrices – Direct method - Power method and Jacobi Method to find the Eigen values and Eigen vectors.
UNIT III: INTERPOLATION AND CURVE FITTING	Interpolation with equally spaced points - Newton forward and backward interpolation - Interpolation with unevenly spaced points - Lagrange interpolation - Curve fitting - Method of least squares - Fitting a polynomial.
UNIT IV: DIFFERENTIATION, INTEGRATION AND SOLUTION OF DIFFERENTIAL EQUATIONS	Numerical differentiation – Numerical integration – Trapezoidal rule – Simpson's rule – Error estimates – Gauss-Legendre, Gauss-Laguerre, Gauss-Hermite and Gauss-Chebyshev quadrature – solution of ordinary differential equations – Euler and RungaKutta methods.

	Flow-charts – Integer and floating point arithmetic expressions –						
	Built-in functions – Executable and non-executable statements –						
	Subroutines and functions – Programs for the following						
UNIT V:	computational methods: (a) Zeros of polynomials by the bisection						
PROGRAMMING	method, (b) Zeros of polynomials/non-linear equations by the						
WITH C	Newton-Raphson method, (c) Newton's forward and backward						
	interpolation, Lagrange Interpolation, (d) Trapezoidal and Simpson's						
	Rules, (e) Solution of first order differential equations by Euler's						
	method.						

UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and
	Patriotism
	1. V. Rajaraman, 1993, Computer oriented Numerical Methods, 3rd Edition. PHI, New Delhi
	2. M. K. Jain, S. R. Iyengar and R. K. Jain, 1995, Numerical
	Methods for Scientific and Engineering Computation,
	3rd Edition, New Age Intl., New Delhi
TEXT BOOKS	3. S. S. Sastry, Introductory Methods of Numerical analysis, PHI, New Delhi
	4. F. Scheid, 1998, Numerical Analysis, 2nd Edition,
	Schaum's series, McGraw Hill, New York
	5. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P.
	Flannery, 1992, Numerical Recipes in FORTRAN,
	2nd Edition, Cambridge Univ. Press
	1. S. D. Conte and C. de Boor, 1981, Elementary Numerical
	analysis-an algorithmic approach, 3rd Edition, McGraw Hill,)
	2. B. F. Gerald, and P. O. Wheatley, 1994, Applied Numerical
	analysis, 5th Edition, Addison-Wesley, MA.
REFERENCE BOOKS	3. B. Carnagan, H. A. Luther and J. O. Wilkes, 1969, Applied
	Numerical Methods, Wiley, New York.
	4. S. S. Kuo, 1996, Numerical Methods and Computers,
	Addison-Wesley.
	5. V. Rajaraman, Programming in FORTRAN / Programming
	in C, PHI, New Delhi
	1. https://www.scribd.com/doc/202122350/Computer-
	Oriented-Numerical-Methods-by-V-RajaRaman 2. https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/refer
WEB SOURCES	ence/referencespapers.aspx?referenceid=1682874
	3. https://nptel.ac.in/course/122106033/
	4. https://nptel.ac.in/course/103106074/
	5. https://onlinecourses.nptel.ac.in/noc20 ma33/preview

At the end of the course, the student will be able to:

CO1	Recall the transcendental equations and analyze the different root finding						
	methods. Understand the basic concept involved in root finding procedure such as	K1, K2					
	Newton Raphson and Bisection methods, their limitations.						
CO2	Relate Simultaneous linear equations and their matrix representation Distinguish	V5					
	between various methods in solving simultaneous linear equations.	KS					
CO3	Understand, how interpolation will be used in various realms of physics and						
	Apply to some simple problems Analyze the newton forward and backward	K2, K3					
	interpolation						
CO4	Recollect and apply methods in numerical differentiation and integration. Assess	K3,					
	the trapezoidal and Simson's method of numerical integration.	K4					
CO5	Understand the basics of C-programming and conditional statements.	K2					
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAMME OUTCOMES:

Map course outcomes (CO) for each course with programme outcomes (PO) and programme

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	1	1	2	3	2	2	3
CO2	3	2	3	1	1	2	3	2	2	3
CO3	3	2	3	1	1	2	3	2	2	3
CO4	3	2	3	1	1	2	3	2	2	3
CO5	3	2	3	1	1	2	3	2	2	3

specific outcomes (PSO) in the 3-point scale of STRONG(3), MEDIUM(2) and LOW (1).

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	1	1	2	3	2	2	3
CO2	3	2	3	1	1	2	3	2	2	3
CO3	3	2	3	1	1	2	3	2	2	3
CO4	3	2	3	1	1	2	3	2	2	3
CO5	3	2	3	1	1	2	3	2	2	3

Paper - 12 Practical – III -NUMERICAL METHODS AND COMPUTER PROGRAMMING (FORTRAN/C)

II YEAR - THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	Practical – III NUMERICAL METHODS AND COMPUTER	Core	-	1	4	2	4	75
	PROGRAMMING (FORTRAN/C)							

Pre-Requisites

Basic knowledge in differential equation and linear algebra

Basic knowledge of operating system and computer fundamentals.

Learning Objectives

- ➤ The aim and objective of the course on Computational Practical is to familiarize the of M.Sc. students with the numerical methods used in computation and programming using any high level language such as C/FORTRAN
- ➤ To equip the computational skill using various mathematical tools.
- To apply the software tools to explore the concepts of physical science.
- To approach the real time activities using physics and mathematical formulations.

Course Details

(Minimum of Ten Experiments from the list)

- 1. Lagrange interpolation with Algorithm, Flow chart and output.
- 2. Newton forward interpolation with Algorithm, Flow chart and output.
- 3. Newton backward interpolation with Algorithm, Flow chart and output.
- 4. Curve-fitting: Least squares fitting with Algorithm, Flow chart and output.
- 5. Numerical integration by the trapezoidal rule with Algorithm, Flow chart and output.
- 6. Numerical integration by Simpson's rule with Algorithm, Flow chart and output.
- 7. Numerical solution of ordinary first-order differential equations by the Euler method with Algorithm, Flow chart and output.
- 8. Numerical solution of ordinary first-order differential equations by the Runge- Kutta method with Algorithm, Flow chart and output.
- 9. Finding Roots of a Polynomial Bisection Method -
- 10. Finding Roots of a Polynomial Newton Raphson Method -
- 11. Solution of Simultaneous Linear Equation by Gauss elimination method.
- 12. Solution of Ordinary Differential Equation by Euler
- 13. Runge Kutta Fourth Order Method for solving first order Ordinary Differential Equations
- 14. Newton's cotes formula
- 15. Trapezoidal rule
- 16. Simpson's 1/3 rule
- 17. Simpson's 3/8 rule
- 18. Boole's rule

- 19. Gaussian quadrature method (2 point and 3 point formula) 20. Giraffe's root square method for solving algebraic equation 21. Any other practical

	1. Numerical methods using Matlab – John Mathews & Kurtis Fink,
	Prentice Hall, New Jersey 2006
	2. Numerical methods in Science and Engineering - M.K. Venkataraman,
	National Publishing Co. Madras, 1996
TEXT BOOKS	3. V. Rajaraman, 1993, Computer Oriented Numerical Methods, 3 rd Ed.
	(Prentice-Hall, New Delhi.
	4. M.K. Jain, S.R. Iyengar and R.K. Jain, 1995, Numerical Methods for
	Scientific and Engineering Computation, 3 rd Ed. New Age
	International, New Delhi.
	5. S.S. Sastry, Introductory Methods of Numerical Analysis, PHI, New
	Delhi.
	1. S.D. Conte and C. de Boor, 1981, Elementary Numerical Analysis, An
	Algorithmic Approach, 3rd Ed., International Ed. (McGraw-Hill).
	2. B.F. Gerald and P.O. Wheately, 1994, Applied Numerical Analysis, 5th
	Edition, Addison Wesley, Reading, MA.
REFERENCE	3. B. Carnahan, H.A. Luther and J.O. Wikes, 1969, Applied Numerical
BOOKS	Methods (Wiley, New York.
	4. S.S. Kuo, 1996, Numerical Methods and Computers, Addison -
	Wesley, London.
	5. V. Rajaraman, Programming in FORTRAN/ Programming in C, PHI,
	New Delhi.

At the end of the course the student will be able to:

CO1	Program with the C Program/ FORTRAN with the C or any other high level language	K1
CO2		K4
	problems.	
CO4	To enhance the problem-solving aptitudes of students using various numerical methods.	K5
CO5	To apply various mathematical entities, facilitate to visualise any complicate tasks.	К3
100	Process, analyze and plot data from various physical phenomena and interpret their meaning	174
CO7	Identify modern programming methods and describe the extent and limitations of computational methods in physics	K1
CO8	Work out numerical differentiation and integration whenever routine are not applicable.	K5
CO9	Apply various interpolation methods and finite difference concepts.	K4

		Understand and apply numerical methods to find out solution of algebraic equation	IZ1			
	CO10	using different methods under different conditions, and numerical solution of system of	KI, Va			
		algebraic equation.	N4			
K1 - Remember: K2 – Understand: K3 - Apply: K4 - Analyze: K5 – Evaluate						

MAPPING WITH PROGRAMME OUTCOMES:

Map course outcomes **(CO)** for each course with programme outcomes **(PO)** and programme specific outcomes **(PSO)** in the 3-point scale of STRONG(3), MEDIUM(2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Paper 13 - NUCLEAR AND PARTICLE PHYSICS II YEAR - FOURTH SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	NUCLEAR AND PARTICLE PHYSICS	Core	4	-	-	4	4	75

Pre-Requisites

Knowledge of basic structure of atom and nucleus.

- > Introduces students to the different models of the nucleus in a chronological order
- ➤ Imparts an in-depth knowledge on the nuclear force, experiments to study it and the types of nuclear reactions and their principles
- > Provides students with details of nuclear decay with relevant theories
- > Exposes students to the Standard Model of Elementary Particles and Higgs boson

UNITS	Course Details
UNIT I:	Liquid drop model – Weizacker mass formula – Isobaric mass parabola –Mirror Pair - Bohr Wheeler theory of fission – shell model – spin-orbit
NUCLEAR MODELS	coupling – magic numbers – angular momenta and parity of ground states – magnetic moment – Schmidt model – electric Quadrapole moment - Bohr and Mottelson collective model – rotational and vibrational bands.
UNIT II:	Nucleon – nucleon interaction – Tensor forces – properties of nuclear forces – ground state of deuteron – Exchange Forces - Meson theory of
NUCLEAR FORCES	nuclear forces – Yukawa potential – nucleon-nucleon scattering – effective range theory – spin dependence of nuclear forces - charge independence and charge symmetry – isospin formalism.
UNIT III:	Kinds of nuclear reactions – Reaction kinematics – Q-value – Partial wave analysis of scattering and reaction cross section – scattering length
NUCLEAR	- Compound nuclear reactions - Reciprocity theorem - Resonances -
REACTIONS	Breit Wigner one level formula – Direct reactions - Nuclear Chain reaction – four factor formula.
UNIT IV:	Beta decay – Continuous Beta spectrum – Fermi theory of beta decay - Comparative Half-life –Fermi Kurie Plot – mass of neutrino – allowed
NUCLEAR DECAY	and forbidden decay — neutrino physics – Helicity - Parity violation - Gamma decay – multipole radiations – Angular Correlation - internal
	conversion – nuclear isomerism – angular momentum and parity selection rules.

UNIT V:	Classification of Elementary Particles - Types of Interaction and
ELEMENTARY	conservation laws – Families of elementary particles – Isospin – Quantum
PARTICLES	Numbers – Strangeness – Hypercharge and Quarks –SU (2) and SU (3)
TARTICLES	groups-Gell Mann matrices- Gell Mann Okuba Mass formula-Quark
	Model. Standard model of particle physics – Higgs boson.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
	1. D. C. Tayal – Nuclear Physics – Himalaya Publishing House (2011)
	2. K. S. Krane – Introductory Nuclear Physics – John Wiley & Sons
	(2008)
	3. R. Roy and P. Nigam – Nuclear Physics – New Age Publishers (1996)
TEXT BOOKS	4. S. B. Patel – Nuclear Physics – An introduction – New Age
	International Pvt Ltd Publishers (2011)
	5. S. Glasstone – Source Book of Atomic Energy – Van Nostrand
	Reinhold Inc., U.S 3rd Revised edition (1968)
	1. L. J. Tassie – The Physics of elementary particles – Prentice Hall Press
	(1973)
	2. H. A. Enge – Introduction to Nuclear Physics – Addison Wesley,
REFERENCE	Publishing Company. Inc. Reading. New York, (1974).
BOOKS	3. Kaplan – Nuclear Physics – 1989 – 2nd Ed. – Narosa (2002)
	4. Bernard L Cohen – Concepts of Nuclear Physics – McGraw Hill
	Education (India) Private Limited; 1 edition (2001)
	5. B.L. Cohen, 1971, Concepts of Nuclear Physics, TMCH, New Delhi.
	1. http://bubl.ac.uk/link/n/nuclearphysics.html
	2. http://www.phys.unsw.edu.au/PHYS3050/pdf/Nuclear_Models.pdfhttp:
	//www.scholarpedia.org/article/Nuclear_Forces
WEB SOURCES	3. https://www.nuclear-power.net/nuclear-power/nuclear-reactions/
WEDSOURCES	4. http://labman.phys.utk.edu/phys222core/modules/m12/nuclear_models.
	<u>html</u>
	5. https://www.ndeed.org/EducationResources/HighSchool/Radiography/r
	<u>adioactivedecay.html</u>

At the end of the course, the student will be able to:

1	Summarize and identify allowed and forbidden nuclear reactions based on conservation laws of the elementary particles.	K5
	of the nuclear force.	K4
1		K3,
CO3	Use the different nuclear models to explain different nuclear phenomena and the concept of resonances through Briet-Weigner single level formula	K3
	Demonstrate knowledge of fundamental aspects of the structure of the nucleus, radioactive decay, nuclear reactions and the interaction of radiation and matter.	K2, K3
1	Gain knowledge about the concepts of helicity, parity, angular correlation and internal conversion.	K1, K5

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

Paper 14	SPECTROSCOPY	II YEAR -	- FO	URT	TH S	EME	STER	
Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	SPECTROSCOPY	Core	4	-	-	4	4	75

Pre-Requisites

Thorough understanding of electromagnetic spectrum, mathematical abilities, knowledge of molecules, their structure, bond nature, physical and chemical behaviour

- > To comprehend the theory behind different spectroscopic methods
- > To know the working principles along with an overview of construction of different types of spectrometers involved
- To explore various applications of these techniques in R &D.
- ➤ Apply spectroscopic techniques for the qualitative and quantitative analysis of various chemical compounds.
- > Understand this important analytical tool

UNITS	Course Details
UNITI: MICROWAVE SPECTROSCOPY	Rotational spectra of diatomic molecules - Rigid Rotor (Diatomic Molecules)-reduced mass – rotational constant Effect of isotopic substitution - Non rigid rotator – centrifugal distortion constant- Intensity of Spectral Lines- Polyatomic molecules – linear – symmetric asymmetric top molecules - Hyperfine structure and quadrupole moment of linear molecules - Instrumentation techniques – block diagram -Information Derived from Rotational Spectra- Stark effect-Problems.
UNITII: INFRA-RED SPECTROSCOPY	Vibrations of simple harmonic oscillator – zero-point energy- Anharmonic oscillator – fundamentals, overtones and combinations- Diatomic Vibrating Rotator- PR branch – PQR branch- Fundamental modes of vibration of H ₂ O and CO ₂ -Introduction to application of vibrational spectra- IR Spectrophotometer Instrumentation (Double Beam Spectrometer) – Fourier Transform Infrared Spectroscopy - Interpretation of vibrational spectra— remote analysis of atmospheric gases like N2O using FTIR by National Remote Sensing Centre (NRSC), India— other simple applications
UNITIII: RAMAN SPECTROSCOPY	Theory of Raman Scattering - Classical theory – molecular polarizability – polarizability ellipsoid - Quantum theory of Raman effect - rotational Raman spectra of linear molecule - symmetric top molecule – Stokes and anti-stokes line- SR branch -Raman activity of H ₂ O and CO ₂ Mutual exclusion principle-determination of N ₂ O structure -Instrumentation technique and block diagram - structure determination of planar and non-planar molecules using IR and Raman techniques - FT Raman spectroscopy- SERS

	ht 1 1 m 4 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m
UNITIV: RESONANCE SPECTROSCOPY	Nuclear and Electron spin-Interaction with magnetic field - Population of Energy levels - Larmor precession- Relaxation times - Double resonance-Chemical shift and its measurement - NMR of Hydrogen nuclei - Indirect Spin - Spin Interaction - interpretation of simple organic molecules - Instrumentation techniques of NMR spectroscopy - NMR in Chemical industries- MRI Scan Electron Spin Resonance: Basic principle -Total Hamiltonian (Direct Dipole-Dipole interaction and Fermi Contact Interaction) - Hyperfine Structure (Hydrogen atom) - ESR Spectra of Free radicals -g-factors - Instrumentation - Medical applications of ESR
UNITV:	Origin of UV spectra - Laws of absorption – Lambert Bouguer law – Lambert Beer law - molar absorptivity – transmittance and absorbance - Color in organic compounds- Absorption by organic Molecule -Chromophores - Effect of conjugation on chromophores - Choice of Solvent and Solvent effect - Absorption by inorganic systems - Instrumentation - double beam UV-Spectrophotometer -Simple applications
PROFESSIONAL	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 C N Banwell and E M McCash, 1994, Fundamentals of Molecular Spectroscopy, 4th Edition, Tata McGraw–Hill, New Delhi. G Aruldhas, 1994, Molecular Structure and Molecular Spectroscopy, Prentice–Hall of India, New Delhi. D.N. Satyanarayana, 2001, Vibrational Spectroscopy and Applications, New Age International Publication. B.K. Sharma, 2015, Spectroscopy, Goel Publishing House Meerut. Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7th Edition), New Age International Publishers.
REFERENCE BOOKS	 J L McHale, 2008, Molecular Spectroscopy, Pearson Education India, New Delhi. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal Society of Chemistry, RSC, Cambridge. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol. I, Chapman and Hall, New York. K. Chandra, 1989, Introductory Quantum Chemistry, Tata McGraw Hill, New Delhi. Demtroder. W, Laser Spectroscopy: Basic concepts and Instrumentation, SpringerLink.
WEB SOURCES	https://www.youtube.com/watch?v=0iQhirTf2PI https://www.coursera.org/lecture/spectroscopy/introduction-3N5D5 https://www.coursera.org/lecture/spectroscopy/infrared-spectroscopy-8jEee

- 4. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
- $5. \quad \underline{https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy-introduction-XCWRu}$

At the end of the course the student will be able to:

CO1	Understand fundamentals of rotational spectroscopy, view molecules as elastic	
	rotors and interpret their behaviour. Able to quantify their nature and correlate	K2
	them with their characteristic properties.	
CO2	Understand the working principles of spectroscopic instruments and theoretical	
	background of IR spectroscopy. Able to correlate mathematical process of	K2, K3
	Fourier transformations with instrumentation. Able to interpret vibrational	K2, K3
	spectrum of small molecules.	
CO3	Interpret structures and composition of molecules and use their knowledge of	K5
	Raman Spectroscopy as an important analytical tool	KS
CO4	Use these resonance spectroscopic techniques for quantitative and qualitative	K4
	estimation of a substances	N4
CO5	Learn the electronic transitions caused by absorption of radiation in the UV/Vis	IZ1
	region of the electromagnetic spectrum and be able to analyze a simple UV	K1,
	spectrum.	K5
K1 - R	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

Paper 15 PRACTICAL IV	II YEAR - FOURTH SEMESTER
-----------------------	---------------------------

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	Nuclear Physics and Spectroscopy	Core	-	1	4	2	4	75

Pre-Requisites

Knowledge and handling of general and experiments of Physics, as well as fundamentals of digital principles,

Learning Objectives

- > To measure the gamma ray spectrum
- > To measure various spectra using different experimental set-ups
- > To analyse the materials properties from the spectral data

Course Details

(Minimum of Ten Experiments from the list)

- 1. Determination of Thickness of air film. Solar spectrum Hartmann's formula. Edser and Butler fringes.
- 2. Determination of Solar constant
- 3. Determination of velocity and compressibility of a liquid using Ultrasonics Interferometer
- 4. Arc spectrum Iron.
- 5. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser
- 6. Measurement of Magnetic Susceptibility Guoy's method
- 7. GM counter Feather's analysis: Range of Beta rays
- 8. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser.
- 9. Determination of Refractive index of liquids using diode Laser/ He Ne Laser
- 10. Molecular spectra CN bands
- 11. Determine the characteristics of the G.M. tube
- 12. Find the operating voltage of the G.M. tube and also determine the mass coefficient of the given Al absorption
- 13. Find the inverse square law of the given gamma source and its dead time of the G.M. tube.
- 14. Average grain size & its distribution analysis and particle size & its distribution analysis using linear intercept method for a given micrographs
- 15. Measurement of temperature dielectric constant of solids and determination of Curie temperature
- 16. Measurement of Polarisation-Electric field loop of a ferroelectric materials and analysis of loop parameters
- 17. Tauc's plot analysis to determine the bandgap, nature of the bandgap and its absorption coefficient of semiconductor thin films

- 18. Measurement of temperature dependent ionic conductivity of the insulators and determination of activation energy.
- 19. Measurement of Hydrogen spectral line Balmer series
- 20. Measurement of alkali and Alkaline earth atomic spectra
- 21. Measurement of UV-Visible spectra of solvents
- 22. Measurement of band gap of nanomaterials/bulk/thin films
- 23. Estimation of the molecular parameters such as Bond Length, Bond Angle, Dipole Moment from Rotation Spectra
- 24. Mode assignment of the IR spectra of H₂O and C₆H₆
- 25. Mode assignment of the Raman spectra of CHCl₃ and CCl₄ and determination of depolarisation ratio of the modes
- 26. Remote analysis of atmospheric gases like N₂O using FTIR by National Remote Sensing Centre (NRSC), India
- 27. Determination of molecular structure from NMR spectra
- 28. Determination Lande's splitting factor from ESR spectrometer
- 29. Determination of force constant of HCl from IR spectra
- 30. Measurement of Raman spectra of carbon based materials
- 31. Determination of Planck Constant LED Method
- 32. Any other experiment

	1. Practical Physics, Gupta and Kumar, Pragati Prakasan
	2. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad,
	Eastern Economy Edition.
TEVE BOOKS	3. Electronic lab manual Vol I, K ANavas, Rajath Publishing
TEXT BOOKS	4. Douglas V. Hall, Microprocessors and Interfacing programming and
	Hardware, Tata Mc Graw Hill Publications (2008)
	5. V. Vijayendran, 2005, Fundamentals of Microprocessor-8085",
	3rd Edition S.Visvanathan Pvt, Ltd.
	1. Advanced Practical Physics, S.P Singh, Pragati Prakasan
	2. A course on experiment with He-Ne Laser, R. S. Sirohi, John Wiley
	& Sons (Asia) Pvt. ltd
DEFEDENCE	3. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya
REFERENCE	Publishing
BOOKS	4. Electronic Laboratory Primer a design approach, S. Poornachandra,
	B. Sasikala, Wheeler Publishing, New Delhi
	5. Microprocessor and Its Application - S. Malarvizhi, Anuradha
	Agencies Publications

At the end of the course, the student will be able to:

CO1 Develop the programming skills of Microprocessor	K5
CO2 Appreciate the applications of Microprocessor programming	К3
CO3 Understand the structure and working of 8085 microprocessor and apply	y it. K1, K3

CO4	Acquire knowledge about the interfacing peripherals with 8085 microprocessor.	K1, K4				
CO5	Acquire knowledge about the interfacing 8051 microcontroller with various peripherals.	K1,K4				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAMME OUTCOMES:

Map course outcomes **(CO)** for each course with programme outcomes **(PO)** and programme specific outcomes **(PSO)** in the 3-point scale of STRONG(3), MEDIUM(2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	1	3	2
CO2	2	1	3	3	3	2	2	1	3	2
CO3	3	3	1	3	3	2	2	1	3	2
CO4	3	3	3	3	3	2	2	1	3	2
CO5	3	3	3	3	3	2	2	1	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	1	3	2
CO2	2	1	3	3	3	2	2	1	3	2
CO3	3	3	1	3	3	2	2	1	3	2
CO4	3	3	3	3	3	2	2	1	3	2
CO5	3	3	3	3	3	2	2	1	3	2

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	ENERGY PHYSICS	ELECTIVE	3	-	1	3	3	75

Pre-Requisites Knowledge of conventional energy resources

- To learn about various renewable energy sources.

 To know the ways of effectively utilizing the oceanic energy.

 To study the method of harnessing wind energy and its advantages.

 To learn the techniques useful for the conversion of biomass into useful energy.
- To know about utilization of solar energy.

UNITS	Course Details
UNIT I: INTRODUCTION TO ENERGY SOURCES	Conventional and non-conventional energy sources and their availability—prospects of Renewable energy sources—Energy from other sources—chemical energy—Nuclear energy—Energy storage and distribution.
UNIT II: ENERGY FROM THE OCEANS	Energy utilization–Energy from tides–Basic principle of tidal power–utilization of tidal energy – Principle of ocean thermal energy conversion systems.
UNIT III: WIND ENERGY SOURCES	Basic principles of wind energy conversion–power in the wind–forces in the Blades– Wind energy conversion–Advantages and disadvantages of wind energy conversion systems (WECS) - Energy storage–Applications of wind energy.
UNIT IV: ENERGY FROM BIOMASS	Biomass conversion Technologies— wet and dry process— Photosynthesis - Biogas Generation: Introduction—basic process: Aerobic and anaerobic digestion — Advantages of anaerobic digestion—factors affecting bio digestion and generation of gas- bio gas from waste fuel— properties of biogas-utilization of biogas.
UNIT V: SOLAR ENERGY SOURCES	Solar radiation and its measurements—solar cells: Solar cells for direct conversion of solar energy to electric powers—solar cell parameter—solar cell electrical characteristics— Efficiency—solar water Heater —solar distillation— solar cooking—solar greenhouse — Solar pond and its applications.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1 CD D : 1000 N				
	1. G.D. Rai, 1996, Non – convention sources of, 4th edition, Khanna				
	publishers, New Delhi.				
	2. S. Rao and Dr. ParuLekar, Energy technology.				
TEXT	3. M.P. Agarwal, Solar Energy, S. Chand and Co., New Delhi (1983).				
BOOKS	4. Solar energy, principles of thermal collection and storage by S.P.Sukhatme,				
	2 nd edition, Tata McGraw-Hill Publishing Co. Lt., New Delhi (1997).				
	5. Energy Technology by S.Rao and Dr.Parulekar.				
	1. Renewable energy resources, John Twidell and Tonyweir, Taylor and				
	Francis group, London and New York.				
	2. Applied solar energy, A.B.MeinelandA.P.Meinal				
DEFEDENCE	3. John Twidell and Tony Weir, Renewable energy resources, Taylor and				
REFERENCE	Francis group, London and New York.				
BOOKS	4. Renewal Energy Technologies: A Practical Guide for Beginners C.S.				
	Solanki-PHI Learning				
	5. Introduction to Non-Conventional Energy Resources -Raja et. al., Sci. Tech				
	Publications				
	1.https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&print				
	able=1				
WEB	2. https://www.nationalgeographic.org/encyclopedia/tidal-energy/				
SOURCES	3. https://www.ge.com/renewableenergy/wind-energy/what-is-wind-energy				
SOURCES	4. https://www.reenergyholdings.com/renewable-energy/what-is-biomass/				
	5. https://www.acciona.com/renewable-energy/solar-energy/				

At the end of the course, the student will be able to:

CO1	To identify various forms of renewable and non-renewable energy sources	K1
CO2	Understand the principle of utilizing the oceanic energy and apply it for practical	K2
	applications.	K2
CO3	Discuss the working of a windmill and analyze the advantages of wind energy.	K3
CO4	Distinguish aerobic digestion process from anaerobic digestion.	K3,K4
CO5	Understand the components of solar radiation, their measurement and apply them to	K2 K5
	utilize solar energy.	KZ,KS
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

Elective - List 1 – 2. CRYSTAL GROWTH AND THIN	I/II YEAR –
FILMS	FIRST/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	CRYSTAL GROWTH AND THIN FILMS	ELECTIVE	3	ı	ı	3	3	75

Pre-Requisites
Fundamentals of Crystal Physics
Learning Objectives
To acquire the knowledge on Mucleation and Vincting of arrestal growth

- To acquire the knowledge on Nucleation and Kinetics of crystal growth
- > To understand the Crystallization Principles and Growth techniques
- > To study various methods of Crystal growth techniques
- > To understand the thin film deposition methods
- > To apply the techniques of Thin Film Formation and thickness Measurement

UNITS	Course Details
UNIT I: CRYSTAL GROWTH KINETICS	Basic Concepts, Nucleation and Kinetics of growth Ambient phase equilibrium - super saturation - equilibrium of finite phases equation of Thomson - Gibbs - Types of Nucleation - Formation of critical Nucleus - Classical theory of Nucleation - Homo and heterogeneous formation of 3D nuclei - rate of Nucleation - Growth from vapour phase solutions, solutions and melts - epitaxial growth - Growth mechanism and classification - Kinetics of growth of epitaxial films
UNIT II: CRYSTALLIZATION PRINCIPLES	Crystallization Principles and Growth techniques Classes of Crystal system - Crystal symmetry - Solvents and solutions - Solubility diagram - Super solubility - expression for super saturation - Metastable zone and introduction period - Miers TC diagram - Solution growth - Low and high temperatures solution growth - Slow cooling and solvent evaporation methods - Constant temperature bath as a Crystallizer.

	Gel, Melt and Vapour growth techniques Principle of Gel techniques -
UNIT III:	Various types of Gel - Structure and importance of Gel - Methods of Gel
	growth and advantages - Melt techniques - Czochralski growth - Floating
GEL, MELT AND	zone - Bridgeman method - Horizontal gradient freeze - Flux growth -
VAPOUR GROWTH	Hydrothermal growth - Vapour phase growth - Physical vapour
	deposition - Chemical vapour deposition - Stoichiometry.
	Thin film deposition methods of thin film preparation, Thermal
UNIT IV:	evaporation, Electron beam evaporation, pulsed LASER deposition,
THIN FILM	Cathodic sputtering, RF Magnetron sputtering, MBE, chemical vapour
DEPOSITION	deposition methods, Sol Gel spin coating, Spray pyrolysis, Chemical bath
METHODS	deposition.
METHODS	Thin Film Formation and thickness Measurement Nucleation, Film growth
	and structure - Various stages in Thin Film formation, Thermodynamics
UNIT V:	
THIN FILM	of Nucleation, Nucleation theories, Capillarity model and Atomistic model
FORMATION	and their comparison. Structure of Thin Film, Roll of substrate, Roll of
	film thickness, Film thickness measurement - Interferometry,
TINITE VII	Ellipsometry, Micro balance, Quartz Crystal Oscillator techniques.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
	1. V. Markov Crystal growth for beginners: Fundamentals of Nucleation,
	Crystal Growth and Epitaxy (2004) 2nd edition
	2. A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008)
	3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from
TEXT BOOKS	Solution"
TENT BOOKS	4. 4. D. Elwell and H. J. Scheel, "Crystal Growth from High
	Temperature Solution"
	5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge
	University Press. USA.
	1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986)
	2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School
	Notes".
REFERENCE	3. P. SanthanaRaghavan and P. Ramasamy, "Crystal Growth
BOOKS	Processes",KRU Publications.
	4. H.E. Buckley, 1951, Crystal Growth, John Wiley and Sons,
	New York
	5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London.
	1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrI
	O8kZl1D1Jp
WED COUDOEC	2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7
WEB SOURCES	KeTLUuBu3WF 2. https://www.youtube.com/ploydigt?ligt=PLADLBin7lcNiC1Dlnc0MDA
	3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA53CMKFHPSi9m
	4. https://www.youtube.com/playlist?list=PLXHedI-
	Trops., ii ii ii journos.voim prajinot. iist ii Ezzirour

xbyr8xIl KQFs R oky3Yd1Emw

5. https://www.electrical4u.com/thermal-conductivity-of-metals/

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1	Acquire the Basic Concepts, Nucleation and Kinetics of crystal growth	K1					
CO2	Understand the Crystallization Principles and Growth techniques	K2, K4					
CO3	Study various methods of Crystal growth techniques	K3					
CO4	Understand the Thin film deposition methods	K2					
CO5	Apply the techniques of Thin Film Formation and thickness Measurement	K3, K4					
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	1	2	1	3	2	2	2	2
CO2	3	3	1	3	1	2	3	2	2	1
CO3	3	2	1	3	1	2	3	3	3	1
CO4	3	2	1	2	1	2	3	3	3	1
CO5	2	3	3	3	1	3	3	3	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	1	2	1	3	2	2	2	2
CO2	3	3	1	3	1	2	3	2	2	1
CO3	3	2	1	3	1	2	3	3	3	1
CO4	3	2	1	2	1	2	3	3	3	1
CO5	2	3	3	3	1	3	3	3	3	2

Elective - List 1 – 3. ANALYSIS OF CRYSTAL	I/II YEAR –
STRUCTURES	FIRST/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	ANALYSIS OF CRYSTAL STRUCTURES	ELECTIVE	3	-	-	3	3	75

Pre-Requisites

Fundamentals of crystal structures, symmetry and X-Ray Diffraction techniques

- To teach the concept of crystal structures and symmetry, and diffraction theory
- ➤ To provide students with a background to X-ray generation, scattering theory and experimental diffraction from single crystals
- > To provide instruction on the methods and basis for determining low-molecular weight crystal structures using X-ray Crystallography
- > To give the students a background to the instrumentation used for powder diffraction and structure refinement using Rietveld method
- > To teach the different levels of structure exhibited by proteins and nucleic acids and methods used in protein crystallography.

UNITS	Course details
UNIT I: CRYSTAL	Unit cell and Bravais lattices - crystal planes and directions - basic symmetry elements operations - translational symmetries - point groups - space groups - equivalent positions - Bragg's law - reciprocal lattice concept -Laue conditions
LATTICE	- Ewald and limiting spheres - diffraction symmetry - Laue groups.
UNIT II: DIFFRACTIO N	X-ray generation, properties - sealed tube, rotating anode, synchrotron radiation - absorption - filters and monochromators Atomic scattering factor - Fourier transformation and structure factor - anomalous dispersion - Laue, rotation/oscillation, moving film methods- interpretation of diffraction patterns - cell parameter determination - systematic absences - space group determination.
UNIT III: STRUCTURE ANALYSIS	Single crystal diffractometers - geometries - scan modes - scintillation and area detectors -intensity data collection - data reduction - factors affecting X-ray intensities - temperature and scale factor - electron density - phase problem - normalized structure factor - direct method fundamentals and procedures -Patterson function and heavy atom method - structure refinement - least squares method - Fourier and difference Fourier synthesis - R factor - structure interpretation - geometric calculations - conformational studies - computer program packages.
UNIT IV: POWDER METHODS	Fundamentals of powder diffraction - Debye Scherrer method - diffractometer geometries - use of monochromators and Soller silts - sample preparation and data collection - identification of unknowns - powder diffraction files (ICDD) - Rietveld refinement fundamentals - profile analysis - peak shapes - whole pattern fitting - structure refinement procedures - auto-indexing - structure determination from powder data - new developments. Energy dispersive X-ray analysis - texture studies - crystallite size determination - residual stress analysis - high and low temperature and high pressure crystallography (basics only).
UNIT V: PROTEIN CRYSTALLOG RAPHY UNIT VI:	Globular and fibrous proteins, nucleic acids - primary, secondary, tertiary and quaternary structures - helical and sheet structures - Ramachandran map and its significance – crystallization methods for proteins - factors affecting protein crystallization - heavy atom derivatives – methods used to solve protein structures - anomalous dispersion methods. Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,
01111 111	

PROFESSION	Competitive Examinations, Employable and Communication Skill
AL	Enhancement, Social Accountability and Patriotism.
COMPONENT	
S	
TEXT BOOKS	 Azaroff, L.V., "Elements of X-Ray Crystallography", Techbooksl, New York, 1992. Blundell, T.L. and Johnson, L., "Protein Crystallography", Academic Press, New York, 1986. Cullity, B.D. and Stock,S.R. "Elements of X-ray Diffraction", Pearson, 2014. H.L. Bhat, Introduction to Crystal Growth Principles and Practice CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2015. B.R. Pamplin, Crystal Growth, Pergamon Press, Oxford, 1975.
REFERENCE BOOKS	 Glusker, J.P. and Trueblood, K.N. Crystal Structure Analysis: A Primer", Oxford University, Press, New York, 1994. Ladd, M.F.C. and Palmer, R.A., "Structure Determination by X-ray Crystallography", Plenum Press, New York, 3rd Edition, 1993. Stout, G.H. and Jensen, L."X-ray Structure Determination, A Practical Guide", Macmillan:,New York, 1989. Woolfson, M.M. "An Introduction to X-ray Crystallography" Cambridge University Press, New York, 1997. Sam Zhang, Lin Ki, Ashok Kumar, Materials Characterization Techniques, CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2009
WEB SOURCES	 https://archive.nptel.ac.in/courses/112/106/112106227/ https://archive.nptel.ac.in/courses/104/108/104108098/ https://www.digimat.in/nptel/courses/video/102107086/L11.html https://onlinecourses.nptel.ac.in/noc19_cy35/previewhttps://onlinecourses.nptel.ac.in/noc19_cy35/preview https://nptel.ac.in/courses/104/104/104011/

COURSE OUTCOMES:At the end of the course, the student will be able to:

CO1	Understand crystal symmetry and reciprocal lattice concept for X-ray diffraction	K2
CO2	Gain a working knowledge of X-ray generation, X-ray photography with Laue, oscillation and moving film methods, and space group determination	K1,K3
CO3	Get an exposure to crystal structure determination using program packages	K1,K4
CO4	Understand the instrumentation used for powder diffraction, data collection, data interpretation, and structure refinement using Rietveld method	K2, K4
CO5	Get an insight into the structural aspects of proteins and nucleic acids, crystallization of proteins and methods to solve protein structures	K5
	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	•

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	2	1	2	2	2
CO2	3	3	3	2	2	2	1	2	2	2
CO3	3	3	2	2	2	2	2	2	2	2
CO4	3	2	2	2	2	2	2	2	2	2
CO5	3	2	2	2	2	2	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	2	1	2	2	2
CO2	3	3	3	2	2	2	1	2	2	2
CO3	3	3	2	2	2	2	2	2	2	2
CO4	3	2	2	2	2	2	2	2	2	2
CO5	3	2	2	2	2	2	2	2	2	2

Elective - List 1 – 4. MATERIALS SCIENCE	I/II YEAR - FIRST/THIRD SEMESTER
--	----------------------------------

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	MATERIALS SCIENCE	ELECTIVE	3	1	1	3	3	75

	Pre-Requisites
Basic knowledge on di	erent types of materials
	Learning Objectives
> To gain knowledge on	otoelectronic materials
To learn about ceramic	processing and advanced ceramics

- > To understand the processing and applications of polymeric materials
- > To gain knowledge on the fabrication of composite materials
- > To learn about shape memory alloys, metallic glasses and nanomaterials

UNITS	Course details
	Importance of optical materials – properties: Band gap and lattice
UNIT I:	matching – optical absorption and emission – charge injection, quasi-
OPTOELECTRONIC	Fermi levels and recombination – optical absorption, loss and gain.
MATERIALS	Optical processes in quantum structures: Inter-band and intra-band
	transitions Organic semiconductors. Light propagation in materials -

	Electro-optic effect and modulation, electro-absorption modulation –
	exciton quenching.
UNIT II	Ceramic processing: powder processing, milling and sintering –
CERAMIC	structural ceramics: zirconia, almina, silicon carbide, tungsten carbide –
MATERIALS	electronic ceramics – refractories – glass and glass ceramics
UNIT III POLYMERIC MATERIALS UNIT IV	Polymers and copolymers – molecular weight measurement – synthesis: chain growth polymerization – polymerization techniques – glass transition temperature and its measurement – viscoelasticity – polymer processing techniques – applications: conducting polymers, biopolymers and high temperature polymers. Particle reinforced composites – fiber reinforced composites – mechanical behavior – fabrication methods of polymer matrix
COMPOSITE	composites and metal matrix composites – carbon/carbon composites:
MATERIALS	fabrication and applications.
UNIT V: NEW MATERIALS	Shape memory alloys: mechanisms of one-way and two-way shape memory effect, reverse transformation, thermo-elasticity and pseudo-elasticity, examples and applications -bulk metallic glass: criteria for glass formation and stability, examples and mechanical behavior -nanomaterials: classification, size effect on structural and functional properties, processing and properties of Nano crystalline materials, single walled and multi walled carbon nanotubes

UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial										
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and										
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism										
COMICINE	1. Jasprit Singh, Electronic and optoelectronic properties of										
TEXT BOOKS	semiconductor structures, Cambridge University Press, 2007 2. P. K. Mallick. Fiber-Reinforced Composites. CRC Press, 2008. 3. V. Raghavan, 2003, Materials Science and Engineering, 4 th Edition Prentice- Hall India, New Delhi(For units 2,3,4 and 5) 4. G.K. Narula, K.S. Narula and V.K. Gupta, 1988, Materials Science Tata McGraw-Hill 5. M. Arumugam, 2002, Materials Science, 3 rd revised Edition, Anuratha Agencies										
REFERENCE BOOKS	 B. S. Murty, P. Shankar, B. Raj, B. B. Rath and J. Murday. Textbook of Nanoscience and Nanotechnology. Springer- Verlag, 2012. K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki (Eds). Shape Memory and Super Elastic Alloys: Technologies and Applications. Wood head Publishing Limited, 2011. Lawrence H. VanVlack, 1998. Elements of Materials Science and Engineering, 6th Edition, Second ISE reprint, Addison-Wesley. H. Iabch and H. Luth, 2002, Solid State Physics – An Introduction to Principles of Materials Science, 2nd Edition, Springer. D. Hull & T. W. Clyne, An introduction to composite materials, Cambridge University Press, 2008. 										
WEB SOURCES	1. https://onlinecourses.nptel.ac.in/noc20_mm02/preview										

- 2. https://nptel.ac.in/courses/112104229
- 3. https://archive.nptel.ac.in/courses/113/105/113105081
- 4. https://nptel.ac.in/courses/113/105/113105025/

https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_M odules (Materials Science)/Electronic Properties/Lattice Vibrations

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1	Acquire knowledge on optoelectronic materials	K1								
CO2	Be able to prepare ceramic materials	K3								
CO3	Be able to understand the processing and applications of polymeric materials	K2, K3								
CO4	Be aware of the fabrication of composite materials	K5								
CO5	Be knowledgeable of shape memory alloys, metallic glasses and nanomaterials	K1								
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;									

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	2	2	2	2	1	2	3
CO2	2	3	3	2	2	2	2	1	2	2
CO3	2	3	2	2	2	2	2	2	2	2
CO4	1	3	2	3	2	3	2	2	2	2
CO5	2	3	2	2	2	2	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	2	2	2	2	1	2	3
CO2	2	3	3	2	2	2	2	1	2	2
CO3	2	3	2	2	2	2	2	2	2	2
CO4	1	3	2	3	2	3	2	2	2	2
CO5	2	3	2	2	2	2	2	2	2	2

Elective - List 1 – 5. PHYSICS OF	I/II YEAR –
NANOSCIENCE AND TECHNOLOGY	FIRST/THIRD SEMESTER

Subject Code	Subject Name	Catego ry	L	T	P	Credits	Inst. Hours	Marks
	PHYSICS OF NANOSCIENCE AND TECHNOLOGY	ELECTIVE				3	4	75

Pre-Requisites Basic knowledge in Solid State Physics Learning Objectives

- Physics of Nanoscience and Technology is concerned with the study, creation, manipulation and applications at nanometer scale.
- > To provide the basic knowledge about nanoscience and technology.
- > To learn the structures and properties of nanomaterials.
- > To acquire the knowledge about synthesis methods and characterization techniques and its applications.

UNITS	Course Details
UNIT I: FUNDAMENTALS OF NANOSCIENCE AND TECHNOLOGY	Fundamentals of NANO – Historical Perspective on Nanomaterial and Nanotechnology — Classification of Nanomaterials – Metal and Semiconductor Nanomaterials - 2D, 1D, 0D nanostructured materials - Quantum dots – Quantum wires – Quantum wells - Surface effects of nanomaterials.
UNIT II: PROPERTIES OF NANOMATERIALS	Physical properties of Nanomaterials: Melting points, specific heat capacity, and lattice constant - Mechanical behavior: Elastic properties - strength - ductility - superplastic behavior - Optical properties: - Surface Plasmon Resonance - Quantum size effects - Electrical properties - Conductivity, Ferroelectrics and dielectrics - Magnetic properties - super para magnetism - Diluted magnetic semiconductor (DMS).
UNIT III: SYNTHESIS AND FABRICATION	Physical vapour deposition - Chemical vapour deposition - sol-gel – Wet deposition techniques - electrochemical deposition method – Plasma arching - Electrospinning method - ball milling technique - pulsed laser deposition - Nanolithography: photolithography – Nanomanipulator.
UNIT IV: CHARACTERIZATION TECHNIQUES	Powder X-ray diffraction – X-ray photoelectron spectroscopy (XPS) - UV-visible spectroscopy – Photoluminescence - Scanning electron microscopy (SEM) - Transmission electron microscopy (TEM) - Scanning probe microscopy (SPM) - Scanning tunneling microscopy (STM) – Vibrating sample Magnetometer.
UNIT V: APPLICATIONS OF NANOMATERIALS	Sensors: Nanosensors based on optical and physical properties - Electrochemical sensors – Nano-biosensors. Nano Electronics: Nanobots - display screens - GMR read/write heads - Carbon Nanotube Emitters – Photocatalytic application: Air purification, water purification - Medicine: Imaging of cancer cells – biological tags - drug delivery - photodynamic therapy - Energy: fuel cells - rechargeable batteries - supercapacitors - photovoltaics.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

1. A textbook of Nanoscience and Nanotechnology, Pradeep T., Tata

TEXT BOOKS	McGraw-Hill Publishing Co. (2012).					
	2. Principles of Nanoscience and Nanotechnology, M.A. Shah, Tokeer					
	Ahmad, Narosa Publishing House Pvt Ltd., (2010).					
	3. Introduction to Nanoscience and Nanotechnology, K. K.					
	Chattopadhyay and A.N. Banerjee, PHI Learning Pvt. Ltd., New					
	Delhi, (2012).					
	4. Nanostructured Materials and Nanotechnology, Hari Singh Nalwa,					
	Academic Press, (2002).					
	5. Nanotechnology and Nanoelectronics, D.P. Kothari,					
	V. Velmurugan and Rajit Ram Singh, Narosa Publishing House					
	Pvt.Ltd, New Delhi. (2018)					
	1. Nanostructures and Nanomaterials – HuozhongGao – Imperial College					
	Press (2004).					
	2. Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley					
	Publishing Inc. USA					
	3. Nano particles and Nano structured films; Preparation,					
REFERENCE	Characterization and Applications, J.H.Fendler John Wiley and Sons.					
BOOKS	(2007)					
	4. Textbook of Nanoscience and Nanotechnology, B.S.Murty, et al.,					
	Universities Press. (2012)					
	5. The Nanoscope (Encyclopedia of Nanoscience and Nanotechnology),					
	Dr. Parag Diwan and Ashish Bharadwaj (2005) Vol. IV -					
	Nanoelectronics Pentagon Press, New Delhi.					
	1. www.its.caltec.edu/feyman/plenty.html					
WEB SOURCES	2. http://www.library.ualberta.ca/subject/nanoscience/guide/index.cfm					
WED SOURCES	3. http://www.understandingnano.com4. http://www.nano.gov					
	5. http://www.nanotechnology.com					
	o. mepar a a amended military.					

At the end of the course, the student will be able to:

CO1 Understand the basic of nanoscience and explore the different types of nanomaterials and should comprehend the surface effects of the nanomaterials.	K1, K2
CO2 Explore various physical, mechanical, optical, electrical and magnetic properties nanomaterials.	111
CO3 Understand the process and mechanism of synthesis and fabrication of nanomaterials.	K2, K3
CO4 Analyze the various characterization of Nano-products through diffraction spectroscopic, microscopic and other techniques.	111
CO5 Apply the concepts of nanoscience and technology in the field of sensors, robotics, purification of air and water and in the energy devices.	К3
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	1	1	3	3	3	3
CO2	3	3	3	2	1	1	3	3	3	3
CO3	3	3	2	2	1	1	3	3	3	3
CO4	3	3	3	2	1	1	3	3	3	3
CO5	3	3	2	2	1	1	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	1	1	3	3	3	3
CO2	3	3	3	2	1	1	3	3	3	3
CO3	3	3	2	2	1	1	3	3	3	3
CO4	3	3	3	2	1	1	3	3	3	3
CO5	3	3	2	2	1	1	3	3	3	3

E	lective - List	1 – 6. DIGITAL COMMUNICATION	I/II YEAR	I/II YEAR - FIRST/THIRD SEMESTER						
	Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks	
		DIGITAL COMMUNICATION	ELECTIVE	3	ı	1	3	3	75	

Pre-Requisites					
Exposure to Fourier transform, pulse modulation, multiplexing, noises in communication signals					
Learning Objectives					
To understand the use of Fourier transform in analyzing the signals					

- To understand the use of Fourier, transform in analyzing the signals
- > To learn about the quanta of transmission of information
- To make students familiar with different types of pulse modulation
- > To have an in depth knowledge about the various methods of error controlling codes
- > To acquire knowledge about spread spectrum techniques in getting secured communication

UNITS	Course Details
UNIT I: SIGNAL ANALYSIS	Fourier transforms of gate functions, delta functions at the origin – Two delta function and periodic delta function – Properties of Fourier transform – Frequency shifting – Time shifting – Convolution – Graphical representation – Convolution theorem – Time Convolution theorem – Frequency Convolution theorem – Sampling theorem.

UNIT II: INFORMATION THEORY	Communication system – Measurement of information – Coding – Bandot Code CCITT Code –Hartley Law – Noise in an information Carrying Channel- Effects of noise- Capacity of noise in a channel – Shannon Hartley theorem –Redundancy.							
UNIT III: PULSE MODULATION	Pulse amplitude modulation - natural sampling – Instantaneous sampling - Fransmission of PAM Signals -Pulse width modulation – Time division multiplexing – Band width requirements for PAM Signals. Pulse Code Modulation –Principles of PCM –Quantizing noise – Generation and demodulation of PCM -Effects of noise –Companding – Advantages and application							
UNIT IV: ERROR CONTROL CODING	Introduction to Linear Block Codes, Hamming Codes, BCH Coding, RS Coding, Convolutional Coding, Coding Grain Viterbi Coding							
UNIT V: SPREAD SPECTRUM SYSTEMS	Pseudo Noise sequences, generation and Correlation properties, direct sequence spread spectrum systems, frequency HOP Systems, processing gain, anti-jam and multipath performance							
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism							

	1. B.P. Lathi, <i>Communication system</i> , Wiley Eastern.						
	2. George Kennedy, <i>Electronic Communication Systems</i> , 3 rd Edition,						
	Mc Graw Hill.						
TEXT	3. Simon Haykin, <i>Communication System</i> , 3 rd Edition, John Wiley & Sons.						
BOOKS	4. George Kennedy and Davis, 1988, <i>Electronic Communication System</i> , Tata						
	McGraw Hill 4 th Edition.						
	5. Taub and Schilling, 1991, "Principles of Communication System", Second						
	edition Tata McGraw Hill.						
	1. John Proakis, 1995, <i>Digital Communication</i> , 3 rd Edition, McGraw Hill,						
	Malaysia.						
	2. M. K. Simen, 1999, Digital Communication Techniques, Signal Design and						
	Detection, Prentice Hall of India.						
REFERENCE	3. Dennis Roddy and Coolen, 1995, <i>Electronics communications</i> , Prentice Hall of						
BOOKS	India IV Edition.						
	4. Wave Tomasi, 1998, "Advanced Electronics communication System" 4th						
	Edition Prentice Hall, Inc.						
	5. M.Kulkarni, 1988, "Microwave and Radar Engineering",						
	Umesh Publications.						
	1. http://nptel.iitm.ac.in/						
WEB	2. http://web.ewu.edu/						
SOURCES	3. http://www.ece.umd.edu/class/enee630.F2012.html A http://www.ece.umd.edu/class/enee630.F2012.html						
	4. http://www.aticourses.com/Advanced%20Topics%20in%20Digital%20Signals http://pxtel.iitm.ac.in/courses/117101051.html						
	J. http://hptel.htm.de.ht/courses/11/1010J1.html						

At the end of the course, the student will be able to:

CO1	O1 Apply the techniques of Fourier transform, convolution and sampling theorems in signal processing						
	CO2 Apply different information theories in the process of study of coding of information, storage and communication						
CO3	Explain and compare the various methods of pulse modulation techniques	K4					
	O4 Apply the error control coding techniques in detecting and correcting errors- able to discuss, analyze and compare the different error control coding						
CO5	Apply, discuss and compare the spread spectrum techniques for secure communications	K3, k5					
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	2	2	3
CO2	3	3	3	1	2	2	3	2	2	3
CO3	3	3	3	1	2	2	3	2	2	3
CO4	3	3	3	1	2	2	3	2	2	3
CO5	3	3	3	1	2	2	3	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	2	2	3	2	2	3
CO2	3	3	3	1	2	2	3	2	2	3
CO3	3	3	3	1	2	2	3	2	2	3
CO4	3	3	3	1	2	2	3	2	2	3
CO5	3	3	3	1	2	2	3	2	2	3

Elective List 1 – 7. COMMUNICATION	I/II YEAR –
ELECTRONICS	FIRST/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	COMMUNICATION ELECTRONICS	ELECTIVE	3	-	-	3	3	75

Pre-Requisites

Knowledge of Regions of electromagnetic spectrum and its characteristics

- ➤ To comprehend the transmission of electromagnetic waves thorough different types of antenna and also to acquire knowledge about the propagation of waves through earth's atmosphere and along the surface of the earth
- > To gain knowledge in the generation and propagation of microwaves
- To acquire knowledge about radar systems and its applications and also the working principle of colour television
- > To learn the working principle of fiber optics and its use in telecommunication
- > To understand the general theory and operation of satellite communication systems

UNITS	Course Details					
UNIT I: ANTENNAS AND WAVE PROPAGATION	Radiation field and radiation resistance of short dipole antenna- groundedantenna-ungrounded antenna-antenna arrays-broadside and end side arrays-antenna gain-directional high frequency antennas-sky wave- ionosphere- Ecles and Larmor theory- Magnento ionic theory-ground wave propagation					
UNIT II: MICROWAVES	Microwave generation—multicavity Klystron-reflex klystron-magnetrontravelling wave tubes (TWT) and other microwave tubes-MASER-Gunndiode-wave guides-rectangular wave guides-standing wave indicator andstanding wave ratio(SWR)					
UNIT III: RADAR AND TELEVISION	Elements of a radar system-radar equation-radar performance Factorsradar transmitting systems-radar antennas-duplexers-radarreceivers and indicators-pulsed systems-other radar systems-colour TVtransmission and reception-colour mixing principle-colour picture tubes-Delta gun picture tube-PIL colour picture tube-cable TV, CCTV andtheatre TV					
UNIT IV: OPTICAL FIBER	Propagation of light in an optical fibre-acceptance angle- numerical aperture-step and graded index fibres-optical fibres as a cylindrical waveguide-wave guide equations-wave guide equations in step index fibres -fibre losses and dispersion-applications					
UNIT V: SATELLITE COMMUNICATION	Orbital satellites-geostationary satellites-orbital patterns-satellite systemlink models-satellite system parameters-satellite system link equationlinkbudget-INSAT communication satellites					

UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 Handbook of Electronics by Gupta and Kumar, 2008 edition. Electronic communication systems – George Kennedy and Davis, Tata McGraw Hill, 4th edition, 1988. Taub and Schilling, principles of communication systems, second edition, Tata Mc Graw Hill (1991). M. Kulkarani, Microwave and radar engineering, UmeshPublications, 1998. Mono Chrome and colour television, R. R. Ghulathi

	1.	Electronic communications – Dennis Roody and Coolen, Prentice Hall of
		India, IV edition, 1995.
	2.	Wayne Tomasi, Advanced electronics communication systems, fourth
		edition, Prentice Hall of India, 1998
DEFEDENCE	3.	Dennis Roddy and Coolen,1995, Electronics communications, Prentice
REFERENCE		Hall of India IV Edition.
BOOKS	4.	Wayne Tomasi, 1998 "Advanced Electronics communication System"
		4 th edition, Prentice Hall of India, 1998
	5.	S. Salivahanan, N. Suersh Kumar & A. Vallavaraj, 2009, Electronic
		Devices and Circuits, Tata McGraw-Hill Publishing Company Limited,
		New Delhi, Second Edition.
	1.	https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/
	2.	https://www.polytechnichub.com/difference-analog-instruments-digital-
WEB SOURCES		instruments/
WED SOURCES	3.	http://nptel.iitm.ac.in/
	4.	http://web.ewu.edu/
	5.	http://nptel.iitm.ac.in/

At the end of the course, the student will be able to:

CO1 Discuss and compare the propagation of electromagnetic waves through sky and o earth's surface Evaluate the energy and power radiated by the different types of antenna	
CO2 Compare and differentiate the methods of generation of microwaves analyze the propagation of microwaves through wave guides- discuss and compare the different methods of generation of microwaves	
CO3 Classify and compare the working of different radar systems- apply the principle of radar in detecting locating, tracking, and recognizing objects of various kinds a considerable distances – discuss the importance of radar in military- elaborate and compare the working of different picture tube	t K3
CO4 Classify, discuss and compare the different types of optical fiber and also to justify the need of it-discover the use of optical fiber as wave guide	K1, K3
CO5 Explain the importance of satellite communication in our daily life-distinguish between orbital and geostationary satellites elaborate the linking of satellites with ground station on the earth	
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	2	1	3
CO2	3	3	3	1	2	2	3	2	1	3
CO3	3	3	3	1	2	2	3	2	1	3
CO4	3	3	3	1	2	2	3	2	1	3

CO5	3	3	3	1	2	2	3	2	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	2	2	3	2	1	3
CO2	3	3	3	1	2	2	3	2	1	3
CO3	3	3	3	1	2	2	3	2	1	3
CO4	3	3	3	1	2	2	3	2	1	3
CO5	3	3	3	1	2	2	3	2	1	3

Elective List 1 – 8.ASTROPHYSICS	I/II YEAR –
	FIRST/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	ASTROPHYSICS	ELECTIVE	3	-	-	3	3	75

Pre-Requisites

Fundamental knowledge about electromagnetic spectrum, wave nature of light and about the universe and the galaxy where we live in.

- To impart knowledge on the physical universe and its evolution.
- > To make the student to understand fundamental principles and techniques of astronomy and astrophysics.
- > To make the student to study electromagnetic radiation from stars, atomic spectra and classification of stars.
- To provide information about the properties and the evolution of stars.
- > To render information about astronomical instrumentation.

UNITS	Course Details
UNIT I: OBSERVATIONAL ASTRONOMY	The electromagnetic spectrum; geometrical optics (ray diagrams, focal length, magnification etc); diffraction (resolving power, Airy disc, diffraction limit etc); telescopes (reflecting, refracting, multiwavelength)
UNIT II: PROPERTIES OF STARS	Brightness (luminosities, fluxes and magnitudes); colours (black body radiation, the Planck, Stefan-Boltzmann and Wien's laws, effective temperature, interstellar reddening); spectral types; spectral lines (Bohr model, Lyman & Balmer series etc, Doppler effect); Hertzprung-Russell diagram; the main sequence (stellar masses ,binary systems, Kepler's

	laws, mass-luminosity relations); distances to stars (parallax, standard candles, P-L relationships, ms-fitting etc); positions of stars (celestial sphere, coordinate systems, proper motions, sidereal and universal time).
UNIT III: THE LIFE AND DEATH OF STARS	Energy source (nuclear fusion, p-pchain, triple-alpha, CNO cycle, lifetime of the Sun); solar neutrinos; basic stellar structure hydro static equilibrium, equation of state); evolution beyond the main sequence; formation of the heavy elements; supernovae; stellar remnants (white dwarfs, neutron stars, black holes, degeneracy pressure, Swarszchild radius, escape velocities).
UNIT IV: GALAXIES	Constituents of galaxies; stellar populations; the interstellar medium; HII regions; 21cm line; spirals and ellipticals; galactic dynamics; galaxy rotation curves and dark matter; active galaxies and quasars.
UNIT V: COSMOLOGY	Galaxies and the expanding Universe; Hubble's Law; the age of the Universe; the Big Bang; cosmic microwave background (black body radiation); big bang nucleosynthesis (cosmic abundances, binding energies, matter & radiation); introductory cosmology (the cosmological principle, homogeneity and isotropy, Olber's paradox); cosmological models (critical density, geometry of space, the fate of the Universe); dark energy and the accelerating Universe.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	1.Zeilik& Gregory, Introductory Astronomy & Astrophysics,4 th edition (Saunders College Publishing) 2.Morison,I.,IntroductiontoAstronomyand Cosmology, (Wiley) 3.Kutner,M.L., Astronomy: A Physical Perspective (Cambridge University Press) 4. Green,S.F.& Jones,M.H.,An Introduction to the Sunand Stars (Cambridge University Press)
REFERENCE BOOKS	5.Jones,M.H.&Lambourne,R.J.A.,An Introduction to Galaxies & Cosmology (Cambridge UniversityPress) 6.Carroll,B.W.&Ostlie,D.A.,An Introduction to ModernAstrophysics (Pearson) 7.Shu,F.H.,The Physical Universe, An Introduction to Astronomy, (University Science Books) 8.Motz,L.&Duveen,A.,The Essentials of Astronomy, (ColombiaUniversityPress)
WEB SOURCES	 https://www.coursera.org/courses?query=astrophysics https://www.space.com https://www.britanica.com https://science.nasa.gov https://merriam-webster.com

<u>COURSE OUTCOMES:</u> At the end of the course, the student will be able to:

CO1 Recall and understand the electromagnetic ration from celestial objects. Analyze the wave nature of light in the form of ray diagram. Apply the knowledge of phenomenon of diffraction and asses, how diffraction limits the resolution of any system having a lens or mirror. Distinguish between reflecting and refracting telescopes and their usage. CO2 Correlate luminosity, flux and magnitude, related to the brightness of a star. Analyze the evolution of stars using HR diagram. Apply and examine the various laws related to temperature of a star. Assess the distance of stars, measured using trigonometric parallax method. Understand the position of star in the celestial sphere. Distinguish between sideral and universal time. CO3 Define nuclear fusion, which is the fundamental energy source of stars. Analyze,
Analyze the evolution of stars using HR diagram. Apply and examine the various laws related to temperature of a star. Assess the distance of stars, measured using trigonometric parallax method. Understand the position of star in the celestial sphere. Distinguish between sideral and universal time. CO3 Define nuclear fusion, which is the fundamental energy source of stars. Analyze,
how neutrinos are born during the process of nuclear fusion in the sun. Recall and explain the CNO cycle – the main source of energy of hotter stars. Comprehend stellar evolution, including red giants, supernovas, neutron stars, pulsars, white dwarfs and black holes, using evidence and presently accepted theories
CO4 Remember and illustrate the structure of our Milky way galaxy. Classify the types of galaxies. Understand thepresence of dark matter in the universe. Explain, howquasars and active galaxies are powered by supermassiveblack holes which produce copious luminosity.
Explain cosmology, a branch of astronomy that involves the origin and evolution of the universe, from the Big Bangto today and on into the future. Define Hubble's law of cosmic expansion. Analyze and assess the big bangnucleosynthesis universe that explains the relative

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	1	2	1	3	2	1	2
CO2	3	2	3	1	2	1	3	2	1	2
CO3	3	2	3	1	2	1	3	2	1	2
CO4	3	2	3	1	2	1	3	2	1	2
CO5	3	2	3	1	2	1	3	2	1	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	1	2	1	3	2	1	2
CO2	3	2	3	1	2	1	3	2	1	2
CO3	3	2	3	1	2	1	3	2	1	2
CO4	3	2	3	1	2	1	3	2	1	2
CO5	3	2	3	1	2	1	3	2	1	2

lective - List 2 – 9. PLASMA PHYSICS	I/II YEAR – SECOND/THIRD SEMESTER
--------------------------------------	-----------------------------------

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	PLASMA PHYSICS	ELECTIVE	3	1	-	3	3	75

Pre-Requisites

Fundamentals of Electricity and Magnetism, Electromagnetic theory, Maxwell's equation, Basic knowledge of electrical and electronics instrumentation.

- To explore the plasma universe by means of in-site and ground-based observations.
- > To understand the model plasma phenomena in the universe.
- > To explore the physical processes which occur in the space environment.

UNITS	Course Details
UNIT I: FUNDAMENTAL CONCEPTS OF PLASMA	Kinetic pressure in a partially ionized - mean free path and collision cross section - Mobility of charged particles - Effect of magnetic field on the mobility of ions and electrons-Thermal conductivity- Effect of magnetic field- Quasi- neutrality of plasma Debye shielding distance - Optical properties of plasma.
UNIT II: MOTION OF CHARGED PARTICLES IN ELECTRIC AND MAGNETIC FIELD	Particle description of plasma- Motion of charged particle in electrostatic field- Motion of charged particle in uniform magnetic field - Motion of charged particle in electric and magnetic fields- Motion of charged particle inhomogeneous magnetic field - Motion of charged particle in magnetic mirror confinement - motion of an electron in a time varying electric field-Magneto- hydrodynamics - Magneto-hydrodynamic equations - Condition for magneto hydrodynamic behaviour.
UNIT III: PLASMA OSCILLATIONS AND WAVES	Introduction, theory of simple oscillations - electron oscillation in a plasma – Derivations of plasma oscillations by using Maxwell's equation - Ion oscillation and waves in a magnetic field - thermal effects on plasma oscillations - Landau damping - Hydro magnetic waves - Oscillations in an electron beam.
UNIT IV: PLASMA DIAGNOSTICS TECHNIQUES UNIT V: APPLICATIONS OF PLASMA	Single probe method - Double probe method - Use of probe technique for measurement of plasma parameters in magnetic field - microwave method - spectroscopic methodlaser as a tool for plasma diagnostics-X-ray diagnostics of plasma - acoustic method - conclusion. Magneto hydrodynamic Generator - Basic theory - Principle of Working-Fuel in MHD Generator - Generation of Microwaves Utilizing High Density Plasma - Plasma Diode.

PHYSICS										
UNIT VI:	Expert	Lectures,	Online	Seminars	-	Webin	ars	on	Indu	ıstrial
PROFESSIONAL	Interacti	ons/Visits,	Compet	titive Ex	amin	ations,	En	nploy	able	and
COMPONENTS	Commu	nication Ski	ll Enhance	ement, Soci	al A	ecountab	ility	and F	atriot	ism

	1. Plasma Physics- Plasma State of Matter - S. N.Sen,										
	PragatiPrakashan, Meerut.										
	2. Introduction to Plasma Physics-M. Uman										
	3. Krall, N. A., and A. W. Trivelpiece. Principles of Plasma Physics.										
	Berkeley, CA: San Francisco Press, 1986. ISBN:										
	9780911302585. Tanenbaum, B. S. Plasma Physics. New York,										
TEXT BOOKS	NY: McGraw-Hill, 1967. ISBN: 9780070628120.										
IEAI DOOKS											
	4. Goldston, R. J., and P. H. Rutherford. Introduction to Plasma										
	Physics. Philadelphia, PA: IOP Publishing, 1995. ISBN: 9780750301831.										
	5. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge,										
	UK: Cambridge University Press, 2005. ISBN: 9780521675741.										
	1. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York,										
	 NY: Springer, 1984. ISBN: 9780306413322. Introduction to Plasma Theory-D.R. Nicholson Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc., 1971. ISBN: 9780126405507. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma 										
REFERENCE											
BOOKS											
	Physics. Boulder, CO: Westview Press, 2004. ISBN:										
	9780813342139. 5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic										
	Techniques. San Diego, CA: Academic Press, 1965										
	1. https://fusedweb.llnl.gov/Glossary/glossary.html										
	2. http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html										
WEB SOURCES	3. http://www.plasmas.org/										
	4. http://www.phy6.org/Education/whplasma.html										
	5. http://www.plasmas.org/resources.htm										

COURSE OUTCOMES:At the end of the course, the student will be able to:

	Understand the collision, cross section of charged particles and to able to correlate the magnetic effect of ion and electrons in plasma state.	,
	Understand the plasma and learn the magneto-hydrodynamics concepts applied to plasma.	K2
CO3	Explore the oscillations and waves of charged particles and thereby apply the	K1, K3

		Maxwell's equation to quantitative analysis of plasma.		
	C O4		K2,	
	C O5	Learn the possible applications of plasma by incorporating various electrical and	KΛ	
		electronic instruments.	17.4	
\mathbf{K}^{1}	1 ₋ R	emember: K2 – Understand: K3 - Apply: K4 - Applyze: K5 - Evaluate:		

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	2	1	2	3	3
CO3	3	3	2	2	1	2	1	3	3	3
CO4	3	3	3	2	1	2	1	3	3	3
CO5	3	3	3	2	1	2	1	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	2	1	2	3	3
CO3	3	3	2	2	1	2	1	3	3	3
CO4	3	3	3	2	1	2	1	3	3	3
CO5	3	3	3	2	1	2	1	3	3	3

Elective - List 2 – 10. BIO PHYSICS I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	BIO PHYSICS	ELECTIVE	3	-	•	3	3	75

Pre-Requisites
Fundamental concepts of Physicsand Biology
Learning Objectives

- ➤ To understand the physical principles involved in cell function maintenance.
- ➤ To understand the fundamentals of macromolecular structures involved in propagation of life.
- > To understand the biophysical function of membrane and neuron.

- > To understand various kinds of radiation and their effects on living system and to know the hazards posed by such radiations and the required precautions.
- > To understand the physical principles behind the various techniques available for interrogating biological macromolecules.

UNITS	Course Details
UNIT I: CELLULAR BIOPHYSICS	Architecture and Life Cycle of cells – Organelles of Prokaryotic and Eukaryotic cell – Cell size and shape – Fine structure of Prokaryotic and Eukaryotic cell organization – Compartment & assemblies membrane system – Extracellular matrix - Molecular mechanisms of Vesicular traffic - Electrical activities of cardiac and neuronal cells.
UNIT II: MOLECULAR BIOPHYSICS	Macromolecular structure: Protein structure – amino acids, peptide bonds, primary, secondary, tertiary and quaternary structures of proteins Nucleic acid structure: nucleosides and nucleotides, RNA structure, DNA structure and conformation. Special Bio-macromolecules: Metalloproteins, nucleoproteins, ribozymes, chaperons and prions.
UNIT III: MEMBRANE AND NEURO BIOPHYISCS	Models membranes - Biological membranes and dynamics - Membrane Capacitors - Transport across cell and organelle membranes - Ion channels. Nervous system: Organization of the nervous system - Membrane potential - Origins of membrane potential - Electrochemical potentials - Nernst equation - Goldman equation.
UNIT IV: RADIATION BIO PHYSICS	X-Ray: Effects on bio-macromolecules – Gamma Radiation: Molecular effects of gamma radiation, Radiation effects on nucleic acids and membranes, Effects on cell and organelles – UV radiation: Effects on bio-macromolecules and proteins – Radiation hazards and protection – use of radiations in cancer.

UNIT V: PHYSICAL METHODS IN	Spectroscopy: UV-Visible absorption spectrophotometry – Optical Rotatory Dispersion (ORD) – Structure Determination: X-ray Crystallography, Electron spin resonance (ESR) and biological applications. Chromatography: Thin layer chromatography (TLC), Gas liquid chromatography (GLC) – Centrifugation: Differential centrifugation,								
BIOLOGY	density gradient centrifugation. Electrophoresis: Gel electrophoresis, polyacrylamide gel electrophoresis.								
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial								
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and								
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism								
	,								
	1. The cell: A molecular approach, Geoffrey M. Cooper, ASM Press, 2013.								
	2. Biophysics, VasanthaPattabhi, N. Gautham, Narosa Publishing, 2009								
TEXT BOOKS	3. Biophysics, P. S. Mishra VK Enterprises, 2010.								
	4. Biophysics, M. A Subramanian, MJP Publishers, 2005.								
	5. Bioinstrumentation, L. Veerakumari, MJP Publishers, 2006.								

REFERENCE BOOKS	 Chemical Biophysics by Daniel A Beard (Cambridge University Press, 2008). Essential cell biology by Bruce Albert et al (Garland Science) Biophysics, W. Hoppe, W. Lohmann, H. Markl and H. Ziegler. Springer Verlag, Berlin (1983). Membrane Biophysics by Mohammad Ashrafuzzaman, Jack A. Tuszynski, (Springer science & business media). Biological spectroscopyby Iain D. Campbell, Raymond A. Dwek
WEB SOURCES	General Bio: http://www.biology.arizona.edu/DEFAULT.html Spectroscopy: http://www.cis.rit.edu/htbooks/nmr/inside.htm Electrophoresis: http://learn.genetics.utah.edu/content/labs/gel/4 Online biophysics programs: https://blanco.biomol.uci.edu/WWWResources.html

At the end of the course, the student will be able to:

CO1	Understand the structural organization and function of living cells and should	K2 K3						
	able to apply the cell signaling mechanism and its electrical activities.	K2, K3						
CO2	Comprehension of the role of biomolecular conformation to function.							
CO ₃	Conceptual understanding of the function of biological membranes and also to understand the functioning of nervous system.	K2, K5						
CO4	Γο know the effects of various radiations on living systems and how to prevent ll effects of radiations.							
CO5	Analyze and interpret data from various techniques viz., spectroscopy, crystallography, chromatography etc.,	K4						
K1 - F	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	1	2	1	3	3	2
CO2	3	3	3	2	1	2	1	3	3	2
CO3	3	3	3	3	1	1	2	3	3	2
CO4	3	3	3	2	1	1	2	3	3	3
CO5	3	3	3	3	1	1	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	1	2	1	3	3	2
CO2	3	3	3	2	1	2	1	3	3	2
CO3	3	3	3	3	1	1	2	3	3	2

CO4	3	3	3	2	1	1	2	3	3	3
CO5	3	3	3	3	1	1	2	3	3	3

Elective List 2 – 11. NONLINEAR DYNAMICS | I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	NONLINEAR DYNAMICS	ELECTIVE	3	-	-	3	3	75

Pre-Requisites

Basics of Numerical methods and Differential equations, Fundamentals of linear and nonlinear waves, and Basics of communication systems

- > To school the students about the analytical and numerical techniques of nonlinear dynamics.
- To make the students understand the concepts of various coherent structures.
- > To train the students on bifurcations and onset of chaos.
- > To educate the students about the theory of chaos and its characterization.
- > To make the students aware of the applications of solitons, chaos and fractals.

ear waves-ordinary differential equations(ODEs)-Partial differential ations(PDEs)- Methods to solve ODEs and PDEs Numerical methods inear and Nonlinear oscillators-Nonlinear waves-Qualitative features									
near and Nonlinear dispersive waves - Solitons – KdB equation – Basic eory of KdB equation –Ubiquitous soliton equations – AKNS Method, acklund transformation, Hirotabilinearization method, Painleve analysis - erturbation methods- Solitons in Optical fibres - Applications.									
One dimensional flows – Two dimensional flows – Phase plane – Limit cycles – Simple bifurcations – Discrete Dinamical system – Strange attractors – Routes to chaos.									
Soliton based communication systems – Solition based computation – Synchronization of chaos – Chaos based communication – Cryptography – Image processing – Stochastic – Resonance – Chaos based computation – Time Series analysis.									
pert Lectures, Online Seminars - Webinars on Industrial eractions/Visits, Competitive Examinations, Employable and mmunication Skill Enhancement, Social Accountability and Patriotism									

	1. M.Lakshmanan and S.Rajasekar, Nonlinear Dynamics: Integrability, Chaos and Patterns. Springer, 2003.
	1 0 /
	2. A.Hasegawa and Y.Kodama, Solitons in Optical Communications.
	Oxford Press, 1995.
	3. Drazin, P. G. Nonlinear Systems. Cambridge University Press,
TEVT DOOLS	2012. ISBN: 9781139172455.
TEXT BOOKS	4. Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems
	and Chaos. Springer, 2003. ISBN: 9780387001777.
	5. Strogatz, Steven H. Nonlinear Dynamics and Chaos: With
	Applications to Physics, Biology, Chemistry, and Engineering.
	Westview Press, 2014. ISBN: 9780813349107.
	1. G.Drazin and R.S.Johnson. Solitons: An Introduction. Cambridge
	University Press, 1989.
	2. M.Lakshmanan and K.Murali. Chaos in Nonlinear Oscillators.
REFERENCE	World Scientific, 1989.
BOOKS	3. S.Strogatz. Nonlinear Dynamics and Chaos. Addison Wesley, 1995.
20011	4. Hao Bai-Lin, Chaos (World Scientidic, Singapore, 1984).
	5. Kahn, P. B., Mathematical Methods for Scientists & Engineers
	(Wiley, NY, 1990)
	1. https://www.digimat.in/nptel/courses/video/108106135/L06.html
	2. http://digimat.in/nptel/courses/video/115105124/L01.html
WEB SOURCES	3. https://www.digimat.in/nptel/courses/video/108106135/L01.html
	4. http://complex.gmu.edu/neural/index.html
	5. https://cnls.lanl.gov/External/Kac.php

At the end of the course, the student will be able to:

K1, K4
K2
K1, K2
K1
К3,
K5
_

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	1	2	2	2	2
CO2	3	2	2	2	2	2	2	2	2	2

CO3	2	2	2	2	2	2	2	2	2	2
CO4	2	2	2	2	2	1	2	2	2	2
CO5	1	2	2	2	2	2	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	1	2	2	2	2
CO2	3	2	2	2	2	2	2	2	2	2
CO3	2	2	2	2	2	2	2	2	2	2
CO4	2	2	2	2	2	1	2	2	2	2
CO5	1	2	2	2	2	2	2	2	2	2

Elective - List 2 – 12. QUANTUM FIELD	I/II YEAR – SECOND/THIRD
THEORY	SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	QUANTUM FIELD THEORY	ELECTIVE	3	1	-	3	3	75

Pre-Requisites Prior exposure on fundamentals of Quantum mechanics and Special Relativity will be essential. Learning Objectives

- To school the students about the analytical and numerical techniques of nonlinear dynamics.
- > To make the students understand the concepts of various coherent structures.
- > To train the students on bifurcations and onset of chaos.
- > To educate the students about the theory of chaos and its characterization.
- > To make the students aware of the applications of solitons, chaos and fractals.

UNITS	Course Details
UNIT I: SYMMETRY PRINCIPLES	Relativistic kinematics, relativistic waves, Klein-Gordon (KG) equation as a relativistic wave equation, treatment of the KG equation as a classical wave equation: its LagrangianandHamiltonian, Noether's theorem and derivation of energy-momentum and angular momentum tensors as consequence of Poincarésymmetry, internal symmetry and the associated conserved current.

UNIT II: QUANTIZATION OF KLEIN-GORDAN FIELD	Canonical quantization of the KG field, solution of KG theory in Schrödinger and Heisenberg pictures, expansion in terms of creation and annihilation operators, definition of the vacuum and N-particle eigenstates of the Hamiltonian, vacuum expectation values, propagators, spin and statistics of the KG quantum.
UNIT III: QUANTIZATION OF DIRAC FIELD	Review of Dirac equation and its quantization, use of anti- commutators, creation and destruction operators of particles and antiparticles, Dirac propagator, energy, momentum and angular momentum, spin and statistics of Dirac quanta.
UNIT IV: QUANTIZATION OF ELECTROMAGNETIC FIELDS	Review of free Maxwell's equations, Lagrangian, gauge transformation and gauge fixing, Hamiltonian, quantization in terms of transverse delta functions, expansion in terms of creation operators, spin, statistics and propagator of the photon.
UNIT V: PERTURBATIVE INTERACTION AT TREE LEVEL	Introduction to interacting quantum fields, Wick's Theorem, Feynman Diagram, Examples from quantum electrodynamics at the tree level: positron-electron and electron-electron scattering.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1.	J. D. BjorkenandS. D. Drell, Relativistic Quantum Fields David
	2.	An Introduction to Quantum Field Theory by M. Peskin and D. V.
		Schroeder
TENT DOOM	3.	Quantum Field theory: From Operators to Path Integrals, 2nd edition by
TEXT BOOKS		Kerson Huang
	4.	Quantum Field Theory by Mark Srednicki
	5.	Quantum Field Theory by Claude Itzykson and Jean Bernard Zuber.
	1.	V.B. Berestetskii, E.M. Lifshitzand L. P. Pitaevskii, Quantum Electrodynamics
	2.	Introduction to the Theory of Quantized Fields by N. N. Bogoliubov and
REFERENCE		D. V. Shirkov (1959)
BOOKS	3.	Quantum Field Theory by L. H. Ryder (1984)
	4.	Quantum Field Theory by L. S. Brown (1992)
	5.	Quantum Field Theory: A Modern Introduction by M. Kaku (1993)
	1.	https://homepages.dias.ie/ydri/QFTNOTES4v2.pdf
	2.	https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/reference
WED COLIDORS		spapers.aspx?referenceid=2605249
WEB SOURCES	3.	https://archive.nptel.ac.in/courses/115/106/115106065/
	4.	http://www.nhn.ou.edu/~milton/p6433/p6433.html
	5.	https://plato.stanford.edu/entries/quantum-field-theory/

<u>COURSE OUTCOMES:</u> At the end of the course, the student will be able to:

CO1	Understand the interconnection of Quantum Mechanics and Special Relativity	K1	
CO2	Enable the students to understand the method of quantization to various field	K2	
CO3	Employ the creation and annihilation operators for quantization	K5	
CO4	Summarizes the interacting field, in quantum domain, and gives a discussion on	I/1	K3
	how perturbation theory is used here.	м,	KJ
CO5	Understand the concept of Feynman diagram	K2	
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;		

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	2	3	3	2	3
CO2	3	3	3	2	3	3	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	3	3	3	2	3	3	3	3	2	3
CO5	3	3	3	2	3	3	3	3	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	2	3	3	2	3
CO2	3	3	3	2	3	3	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	3	3	3	2	3	3	3	3	2	3
CO5	3	3	3	2	3	3	3	3	2	3

Elective - List 2 – 13. GENERAL RELATIVITY AND	I/II YEAR – SECOND/THIRD
COSMOLOGY	SEMESTER

Subject Code	Subject Name	Categ ory	L	Т	P	Credi ts	Inst. Hours	Mark s
	GENERAL RELATIVITY AND COSMOLOGY	ELECTIVE	3	1	1	3	3	75

Pre-Requisites	
Skill in mathematics and mechanics	
Learning Objectives	

> To give an introduction to students in the areas of general relativity and cosmology

UNITS	Course Details						
UNIT I: TENSORS	Tensors in index notation - Kronecker and Levi Civita tensors - inner and outer products - contraction - symmetric and antisymmetric tensors - quotient law - metric tensors - covariant and contravariant tensors - vectors - the tangent space - dual vectors - tensors - tensor products - the Levi-Civita tensor - tensors in Riemann spaces						
UNIT I: TENSORS FIELD	Vector-fields, tensor-fields, transformation of tensors - gradient and Laplace operator in general coordinates - covariant derivatives and Christoffel connection - Elasticity: Field tensor - field energy tensor - strain tensor - tensor of elasticity- curvature tensor						
UNIT III: GENERAL RELATIVITY	The spacetime interval - the metric - Lorentz transformations - space-time diagrams - world-lines - proper time - energy-momentum vector - energy-momentum tensor - perfect fluids - energy-momentum conservation - parallel transport - the parallel propagator - geodesics - affine parameters - the Riemann curvature tensor - symmetries of the Riemann tensor - the Bianchi identity						
UNIT IV: TENSOR IN RELATIVITY	Ricci and Einstein tensors - Weyl tensor - Killing vectors - the Principle of Equivalence - gravitational redshift - gravitation as space-time curvature - the Newtonian limit - physics in curved space-time - Einstein's equations - the Weak Energy Condition - causality - spherical symmetry - the Schwarzschild metric - perihelion precession						
UNIT V: COSMOLOGY	Expansion of the Universe - thermal history - and the standard cosmological model - Friedmann - Robertson-Walker type models of the Universe - Primordial inflation and the theory of cosmological fluctuations - Theory and observations of the cosmic microwave background and of the large-scale structure of the Universe - Dark matter and dark energy - theoretical questions and observational evidence - inflation - origin of galaxies and other open problems						
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism						
TEXT BOOKS	 M. R. Spiegel, Vector Analysis, Schaum'a outline series, McGraw Hill, New York, 1974. James Hartle, Gravity: An introduction to Einstein's general relativity, San Francisco, Addison-Wesley, 2002 Sean Carroll, Spacetime and Geometry: An Introduction to General Relativity, (Addison-Wesley, 2004). Jerzy Plebanskiand Andrzej Krasinski, An Introduction to General Relativity and Cosmology, Cambridge University Press 2006 Meisner, Thorne and Wheeler: Gravitation W. H. Freeman & Co., San Francisco 1973 						

	1. Robert M. Wald: Space, Time, and Gravity: the Theory of the Big Bang and
	Black Holes, Univ. of Chicago Press.
DEFEDENCE	2. J. V. Narlikar, <i>Introduction to Cosmology</i> , Jones &Bartlett 1983
REFERENCE	3. Steven Weinberg, <i>Gravitation and Cosmology</i> , New York, Wiley, 1972.
BOOKS	4. Jerzy Plebanski and Andrzej Krasinski, <i>An Introduction to General</i>
	Relativity and Cosmology, Cambridge University Press 2006
	5. R Adler, M Bazin& M Schiffer, Introduction to General Relativity
	1. http://www.fulviofrisone.com/attachments/article/486/A%20First%20Course
	%20In%20General%20Relativity%20-%20Bernard%20F.Schutz.pdf
	2. https://link.springer.com/book/9780387406282
WEB	3. https://ocw.mit.edu/courses/8-962-general-relativity-spring-
SOURCES	2020/resources/lecture-18-cosmology-i/
	4. https://arxiv.org/abs/1806.10122
	5. https://uwaterloo.ca/applied-mathematics/future-undergraduates/what-you-
	can-learn-applied-mathematics/relativity-and-cosmology

At the end of the course, the student will be able to:

CO1 Skillfully handle tensors		K1		
Understanding of the underlying theore	etical aspects of general relativity and	K2		
CO2 Understanding of the underlying theoretical aspects of general relativity an cosmology				
CO3 Gain knowledge on space time curvature		K1		
CO4 Equipped to take up research in cosmolog	gy	K3, K4		
CO5 Confidently solve problems using mather	natical skills	K5		
K1 - Remember; K2 – Understand; K3 - App	ly; K4 - Analyze; K5 - Evaluate;	•		

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	1	3	2	3	2	2	2	2
CO2	3	3	1	3	2	3	2	2	2	2
CO3	3	2	1	2	1	2	1	1	3	2
CO4	3	2	1	2	1	2	1	1	3	2
CO5	3	2	1	2	1	2	1	1	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	3	1	3	2	3	2	2	2	2
CO2	3	3	1	3	2	3	2	2	2	2
CO3	3	2	1	2	1	2	1	1	3	2
CO4	3	2	1	2	1	2	1	1	3	2
CO5	3	2	1	2	1	2	1	1	3	2

Subject Code	Subject Name	Catego ry	L	Т	P	Credits	Inst. Hours	Marks
	ADVANCED OPTICS	ELECTIVE	3	-	-	3	3	75

Pre-Requisites
Knowledge of ray properties and wave nature of light
Learning Objectives

- > To know the concepts behind polarization and could pursue research work on application aspects of laser
- > To impart an extensive understanding of fiber and non-linear optics
- > To study the working of different types of LASERS
- > To differentiate first and second harmonic generation
- ➤ Learn the principles of magneto-optic and electro-optic effects and its applications

UNITS	Course Details
UNIT 1: POLARIZATION AND DOUBLE REFRACTION	Classification of polarization – Transverse character of light waves – Polarizer and analyzer – Malu's law – Production of polarized light – Wire grid polarizer and the polaroid – Polarization by reflection – Polarization by double refraction – Polarization by scattering – The phenomenon of double refraction – Normal and oblique incidence – Interference of polarized light: Quarter and half wave plates – Analysis of polarized light – Optical activity
UNIT II: LASERS	Basic principles – Spontaneous and stimulated emissions – Components of the laser – Resonator and lasing action – Types of lasers and its applications – Solid state lasers – Ruby laser – Nd:YAG laser – gas lasers – He-Ne laser – CO ₂ laser – Chemical lasers – HCl laser – Semiconductor laser
UNIT III: FIBER OPTICS	Introduction – Total internal reflection – The optical fiber – Glass fibers – The coherent bundle – The numerical aperture – Attenuation in optical fibers – Single and multi-mode fibers – Pulse dispersion in multimode optical fibers – Ray dispersion in multimode step index fibers – Parabolic-index fibers – Fiber-optic sensors: precision displacement sensor – Precision vibration sensor
UNIT IV: NON-LINEAR OPTICS	Basic principles – Harmonic generation – Second harmonic generation – Phase matching – Third harmonic generation – Optical mixing – Parametric generation of light – Self-focusing of light
	Manual anti-al effect. Zaman effect Image Zaman effect

UNIT V:	Magneto-optical effects – Zeeman effect – Inverse Zeeman effect –
MAGNETO-	Faraday effect – Voigt effect – Cotton-mouton effect – Kerr magneto-optic

OPTICS AND	effect – Electro-optical effects – Stark effect – Inverse stark effect –
ELECTRO-OPTICS	Electric double refraction – Kerr electro-optic effect – Pockels electro-optic
	effect
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
	1. B. B. Laud, 2017, Lasers and Non – Linear Optics, 3 rd Edition, New
	Age International (P) Ltd.
	2. AjoyGhatak, 2017, Optics, 6 th Edition, McGraw – Hill Education Pvt.
	Ltd.
TEXT BOOKS	3. William T. Silfvast, 1996, Laser Fundamentals Cambridge University
	Press, New York
	4. J. Peatros, Physics of Light and Optics, a good (and free!) electronic
	book
	5. B. Saleh, and M. Teich, Fundamentals of Photonics, Wiley-Interscience,
	1. F. S. Jenkins and H. E. White, 1981, Fundamentals of Optics, (4 th
	Edition), McGraw – Hill International Edition.
	2. Dieter Meschede, 2004, Optics, Light and Lasers, Wiley – VCH, Varley
REFERENCE	GmbH.
BOOKS	3. Lipson, S. G. Lipson and H. Lipson, 2011, Optical Physics, 4 th Edition,
	Cambridge University Press, New Delhi, 2011.
	4. Y. B. Band, Light and Matter, Wiley and Sons (2006)
	5. R. Guenther, Modern Optics, Wiley and Sons (1990)
	1. https://www.youtube.com/watch?v=WgzynezPiye
	2. https://www.youtube.com/watch?v=ShQWwobpW60
WEB SOURCES	3. https://www.ukessays.com/essays/physics/fiber-optics-and-it-
WED SOURCES	applications.php
	4. https://www.youtube.com/watch?v=0kEvr4DKGRI
	5. http://optics.byu.edu/textbook.aspx

COURSE OUTCOMES:At the end of the course, the student will be able to:

The time of the course, the student will be use to:	
CO1 Discuss the transverse character of light waves and different polarization phenomenon	V1
CO2 Discriminate all the fundamental processes involved in laser devices and to analyze the design and operation of the devices	
CO3 Demonstrate the basic configuration of a fiber optic – communication system and advantages	¹ K3, K4
CO4 Identify the properties of nonlinear interactions of light and matter	K4
CO5 Interpret the group of experiments which depend for their action on an applied magnetics and electric field	K5
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAMME OUTCOMES:

Map course outcomes (CO) for each course with programme outcomes (PO) and programme

specific outcomes (PSO) in the 3-point scale of STRONG(3), MEDIUM(2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	3
C02	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	3	3	3	3	3
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

Elective - List 2 – 15. ADVANCEDMATHEMATICAL	I/II YEAR –
PHYSICS	SECOND/THIRD SEMESTER

Subject Code	Subject Name	Categor y	L	Т	P	Credits	Inst. Hours	Marks
	ADVANCEDMATHEMATICAL PHYSICS	ELECTIVE	3	-	-	3	3	75

Pre-Requisites							
Good knowledge in basic mathematics							
Learning Objectives							
> To educate and involve students in the higher level of mathematics and mathematical							
methods relevant and applicable to Physics.							

UNITS	Course Details					
UNIT I: DISCRETE GROUPS	Definition of a group, subgroup, class, Lagrange's theorem, invariant subgroup, Homomorphism and isomorphism between two groups. Representation of a group, unitary representations, reducible and irreducible representations Schur's lemmas, orthogonality theorem, character table, reduction of Kronecker product of representations, criterion for irreducibility of a representation.					
UNIT II: CONTINUOUS GROUPS	Infinitesimal generators, Lie algebra; Rotation group, representations of the Lie algebra of the rotation group, representation of the rotation group, D-matrices and their basic properties. Addition of two angular momenta and C.G. coefficients, Wigner-Eckart theorem.					
UNIT III: SPECIAL UNITARY	Definition of unitary, unimodular groups SU(2) and SU(3). Lie algebra of SU(2). Relation between SU(2) and rotation group. Lie algebra of SU(3)-Gellmann's matrices. Cartan form of the SU(3). Lie algebra, roots and root					

GROUPS	diagram for SU(3). Weights and their properties, weight diagrams for the irreducible representations 3.3*-, 6,6 8, 10 and 10 of SU(3). Direct product of two SU(3) representations, Young tableaux method of decomposition of products of IR's illustrations with the representations of dim<10. C.G.coefficients for 3 x 3* and 3 x 6 representations. SU(3) symmetry in elementary particle physics, quantum numbers of hadrons and SU(2) and SU(3) classification of hadrons.
UNIT IV: TENSORS	Cartesian vectors and tensors illustration with moment of inertia, conductivity, dielectric tensors. Four vector in special relativitity, vectors and tensors under Lorentz transformations, Illustration from physics. Vectors and tensors under general co-ordinate transformations, contravariant and covariant vectors and tensors, mixed tensors; tensor algebra, addition, subtraction, direct product of tensors, quotient theorem, symmetric and antisymmetric tensors.
UNIT V: TENSOR CALCULUS	Parallel transport, covariant derivative, affine connection. Metric tensor. Expression for Christoffel symbols in terms of and its derivatives (assuming D g = 0. Curvature tensor, Ricci tensor and Einstein tensor. Bianchi identities, Schwarzschild solution to the Einstein equation G=0.

UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial								
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and								
COMPONENTS	ommunication Skill Enhancement, Social Accountability and Patriotism								
TEXT BOOKS	 A.W.Joshi, Group Theory for Physicists D.B.Lichtenberg, Unitary Symmetry and Elementary Particles E.Butkov, Mathematical Physics J.V.Narlikar, General Relativity & Cosmology R. Geroch, Mathematical Physics, The University of Chicago press (1985). 								
REFERENCE BOOKS	 M.Hamermesh <i>Group Theory</i> M.E.Rose: Elementary Theory of Angular Momentum Georgi: Lie Groups for Physicists E.A.Lord: Tensors, Relativity & Cosmology P. Szekeres, A course in modern mathematical physics: Groups, Hilbert spaces and differential geometry, Cambridge University Press. 								
WEB SOURCES	 https://vdoc.pub/documents/unitary-symmetry-and-elementary-particles- c4qsfejthkc0 https://physics.iith.ac.in/HEP_Physics/slides/poplawskitalk.pdf 								

At the end of the course, the student will be able to:

CO1 Gained knowledge of both discrete and continuous groups	K1
CO2 Apply various important theorems in group theory	К3

CO3 Construct group multiplication table, character table relevent branches of physics.	ant to important K5							
CO4 Equipped to solve problems in tensors	K4, K5							
CO5 Developed skills to apply group theory and tensors to peruse re	search K2, K3							
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;								

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	1	1	2	3	2
CO3	3	3	2	1	2	2	1	2	3	2
CO4	3	3	2	2	1	2	1	2	3	2
CO5	3	3	2	2	2	1	1	2	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	1	1	2	3	2
CO3	3	3	2	1	2	2	1	2	3	2
CO4	3	3	2	2	1	2	1	2	3	2
CO5	3	3	2	2	2	1	1	2	3	2

Elective - List 3 –	I/II YEAR – SECOND/THIRD
16. ADVANCED SPECTROSCOPY	SEMESTER

Subject Code	Subject Name	Categ	L	Т	P	Credit s	Inst. Hours	Marks
	ADVANCED SPECTROSCOPY	ELECTIVE	3	-	-	3	3	75

Pre-Requisites
Basic knowledge of group theory, abstract thinking ability, lasers, chemical bonds and molecular structures
Learning Objectives

- ➤ Helps students understand and appreciate spectroscopy as a sufficiently broad field in which many sub disciplines exist.
- Make them appreciate each of these specific techniques with numerous implementations.
- > To realize the progress in this field that is rapid, resulting in improved instrument capabilities and an ever-widening range of applications.
- > To apply group theory in spectroscopy to shed light on molecular symmetry and determine important physical parameters.

UNITS	Course Details
	Group axioms -subgroup, simple group, Abelian group, cyclic group, order
	of a group, class- Lagrange's theorem statement and proof - Symmetry
UNITI:	operations and symmetry elements - Application: construction of group
MOLECULAR	multiplication table (not character table) for groups of order 2, 3, cyclic group
SPECTROSCOPY	of order 4, noncyclic group of order 4 - reducible and irreducible
AND GROUP	representations- Unitary representations - Schur's lemmas - Great
THEORY	orthogonality theorem - point group -Simple applications : Symmetry
	operations of water and ammonia- Construction of character table for C _{2v}
	(water) and C _{3v} (ammonia) molecules
	Lasers as Spectroscopy Light sources - Special Characteristics of Laser
UNITII:	emission- ultra short pulses- laser cooling -Single and multi-mode lasers-
LASER	Laser tenability- Fluorescence spectroscopy with lasers- Laser Raman
SPECTROSCOPY	Spectroscopy - Non-linear Spectroscopy - Applications of Laser
	Spectroscopy in medical fields, materials science research
	Basic idea of Mossbauer spectroscopy - Principle- Mossbauer effect-
UNITIII:	Recoilless emission and absorption- Chemical shift -Effect of electric and
MOSSBAUER	magnetic fields – hyperfine interactions- instrumentation-Applications:
SPECTROSCOPY	understanding molecular and electronic structures
UNITIV:	Principle - XPS spectra and its interpretation- ECSA-EDAX- other forms of
XRAY	XPS - chemical shift - Applications : - stoichiometric analysis- electronic
PHOTOELECTRON	structure- XPES techniques used in astronomy, glass industries, paints and in
SPECTROSCOPY	biological research

	Determination of force constants- force field from spectroscopic data-normal						
UNITV:	ordinate analysis of a simple molecule (H2O) – analyzing thermodynamic						
MOLECULAR	ctions, partition functions, enthalpy, specific heat and related parameters						
MODELLING	om spectroscopic data- molecular modelling using data from various						
	ectroscopic studies						
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial						
PROFESSIONAL	iteractions/Visits, Competitive Examinations, Employable and						
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism						

	1. William Kemp, 2019, Organic Spectroscopy (2 nd Edition) MacMillan,						
	Indian Edition.						
	2. C N Banwell and McCash, 1994, Fundamentals of Molecular						
	Spectroscopy, 4th Edition, Tata McGraw-Hill, New Delhi.						
TEXT BOOKS	3. D.N. Satyanarayana, 2001, Vibrational Spectroscopy and Applications,						
TEAT BOOKS	New Age International Publication.						
	4. B.K. Sharma, 2015, <i>Spectroscopy</i> , Goel Publishing House Meerut.						
	5. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal						
Society of Chemistry, RSC, Cambridge.							
	1. Demtroder. W, Laser Spectroscopy: Basic concepts and Instrumentation,						
	SpringerLink.						
	2. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol.I., Chapman and						
REFERENCE	Hall, New York.						
BOOKS	3. J L McHale, 2008, Molecular Spectroscopy, Pearson Education India,						
DOOKS	New Delhi.						
	4. David. L. Andrews, Introduction to Laser Spectroscopy, Springer, 2020						
	5. Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7 th Edition) New						
	Age International Publishers.						
	1. Fundamentals of Spectroscopy - Course (nptel.ac.in)						
	2. http://mpbou.edu.in/slm/mscche1p4.pdf						
	3. https://onlinecourses.nptel.ac.in/noc20_cy08/preview						
WEB SOURCES	4. https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy-						
	introduction-XCWRu						
	5. https://serc.carleton.edu/research_education/geochemsheets/techniques/						
	mossbauer.html						

COURSE OUTCOMES: At the end of the course, the student will be able to:

CO1 Comprehend set of operations associated with symmetry elements of a mo	olecule,
apply mathematical theory while working with symmetry operations. App	ly K1, K2
mathematical theory while working with symmetry operations. To use gro	oup K1, K2
theory as a tool to characterize molecules.	
CO2 Align with the recent advances in semiconductor laser technology co	mbined _{1/2}
sensitive spectroscopic detection techniques.	KS
CO3 Understand principle behind Mossbauer spectroscopy and apply the conce	epts of W2 W3
isomer shift and quadrupole splitting to analyse molecules.	K2, K3
CO4 Assimilate this XPES quantitative technique and the instrumentation associated	ciated K3,
with this, as applied in understanding surface of materials.	K4
CO5 Employ IR and Raman spectroscopic data along with other data for structu	ural
investigation of molecules. Analyze thermodynamic functions and other	K5
parameters to evolve molecular models.	
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluat	e;

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	2	3	3	2
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	2	3	3	2	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	2	3	3	2
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	2	3	3	2	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	3	3

Elective - List 3 – 17. MICROPROCESSOR	I/II YEAR –
8085 AND MICROCONTROLLER 8051	SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Inst. Hours	Marks
	MICROPROCESSOR 8085 AND	ELECTIVE	2			2	2	75
	MICROCONTROLLER 8051	ELECTIVE	3	-	-	3	3	13

Pre-Requisites
Knowledge of number systems and binary operations
Learning Objectives

- > To provide an understanding of the architecture and functioning of microprocessor 8085A and to the methods of interfacing I/O devices and memory to microprocessor
- To introduce 8085A programming and applications and the architecture and instruction sets of microcontroller 8051

UNITS	Course Details

UNIT I:8085 PROGRAMMING, PERIPHERAL DEVICES AND THEIR INTERFACING	Instruction set - Addressing modes - Programming techniques - Memory mapped I/O scheme- I/O mapped I/O scheme - Memory and I/O interfacing- Data transfer schemes - Interrupts of 8085 - Programmable peripheral interface (PPI) - Control group and control word- Programmable DMA controller - Programmable interrupt controller - Programmable communication interface - Programmable counter /interval timer.
UNIT II: 8085 INTERFACING APPLICATIONS	Seven segment display interface - Interfacing of Digital to Analog converter and Analog to Digital converter - Stepper motor interface - Measurement of electrical quantities –Voltage and current) Measurement of physical quantities (Temperature an strain).
UNIT III: 8051 MICROCONTROLLERHARDWARE	Introduction – Features of 8051 – 8051 Microcontroller Hardware: Pin-out 8051, Central Processing Unit (CPU), internal RAM, Internal ROM, Register set of 8051 – Memory organization of 8051 – Input/Output pins, Ports and Circuits – External data memory and program memory: External program memory, External data memory.
UNIT IV: 8051 INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING	Addressing modes – Data moving (Data transfer) instructions: Instructions to Access external data memory, external ROM / program memory, PUSH and POP instructions, Data exchange instructions – Logical instructions: byte and bit level logical operations, Rotate and swap operations – Arithmetic instructions: Flags, Incrementing and decrementing, Addition, Subtraction, Multiplication and division, Decimal arithmetic – Jump and CALL instructions: Jump and Call program range, Jump, Call and subroutines – Programming.

UNIT V:	8051 Interrupts – Interrupt vector table – Enabling and disabling an interrupt –						
INTERRUPT	Timer interrupts and programming – Programming external hardware interrupts						
	– Serial communication interrupts and programming – Interrupt priority in the						
PROGRAMMING	8051 : Nested interrupts, Software triggering of interrupt. LED Interface Seven						
AND	segment display interface- Interfacing of Digital to Analog converter and						
INTERFACING	Analog to Digital converter - Stepper motor interface - Measurement of						
TO EXTERNAL	electrical quantities – Voltage and current) Measurement of physical						
WORLD	quantities(Temperature an strain).						
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,						
PROFESSIONAL	Competitive Examinations, Employable and Communication Skill						
COMPONENTS	Enhancement, Social Accountability and Patriotism						
	1. A. NagoorKani, Microprocessors & Microcontrollers, RBA Publications						
	(2009).						
TEVE DOOKS	2. A. P. Godse and D. A. Godse, Microprocessors, Technical Publications,						
TEXT BOOKS	Pune (2009).						
	3. Ramesh Gaonkar, Microprocessor Architecture, Programming and						

	Applications with 8085, Penram International Publishing (2013).						
	4. B. Ram, Fundamentals of Microprocessors & Microcontrollers, DhanpatRai						
	publications New Delhi (2016).						
	5. V. Vijayendran, 2005, Fundamentals of Microprocessor-8085", 3rd Edition						
	S.Visvanathan Pvt, Ltd.						
	1. Douglas V. Hall, Microprocessors and Interfacing programming and						
	Hardware, Tata Mc Graw Hill Publications (2008)						
	2. Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. Mckinlay, The						
	8051 Microcontroller and Embedded Systems, Pearson Education (2008).						
	3. Barry B. Brey, 1995, The Intel Microprocessors 8086/8088, 80186, 80286,						
REFERENCE	80386 and 80486, 3rd Edition, Prentice- Hall of India, New Delhi.						
BOOKS	4. J. Uffrenbeck, "The 8086/8088 Family-Design, Programming and						
	Interfacing, Software, Hardware and Applications", Prentice-Hall of India,						
	New Delhi.						
	5. W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors:						
	Programming, Interfacing, Software, Hardware and Applications", Prentice-						
	Hall of India, New Delhi.						

	1 h	ttps://www.tutorialspoint.com/microprocessor/microprocessor 8085 architect
		re.html
WEB		http://www.electronicsengineering.nbcafe.in/peripheral-mapped-io-interfacing/
SOURCE		
S		ttps://www.geeksforgeeks.org/programmable-peripheral-interface-8255/
	4. <u>h</u>	ttp://www.circuitstoday.com/8051-microcontroller
	5. <u>h</u>	ttps://www.elprocus.com/8051-assembly-language-programming/

At the end of the course, the student will be able to:

CO1	Gain knowledge of architecture and working of 8085 microprocessor.	K1					
CO ₂	Get knowledge of architecture and working of 8051 Microcontroller.	K1					
CO3	Be able to write simple assembly language programs for 8085A microprocessor.	K2, K3					
CO4	Able to write simple assembly language programs for 8051 Microcontroller.	K3, K4					
CO5	Understand the different applications of microprocessor and microcontroller.	K3,K 5					
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	3	1	1	1	1	1

CO2	2	1	1	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1
CO5	3	3	3	3	3	1	1	1	1	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	2	3	3	3	3	1	1	1	1	1
CO2	2	1	1	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1
CO5	3	3	3	3	3	1	1	1	1	1

Elective - List 3 – 18.CHARACTERIZATON	I/II YEAR – SECOND/THIRD
OF MATERIALS	SEMESTER

Subject Code	Subject Name	Categor y	L	Т	P	Credits	Inst. Hours	Marks
	CHARACTERIZATON OF MATERIALS	ELECTIVE	3	1	1	3	3	75

Pre-Requisites

Fundamentals of Heat and Thermodynamics, Basics of Optical systems, Microscopic systems, Electrical measurements and Fundamentals of Spectroscopy.

- To make the students learn some important thermal analysis techniques namely TGA, DTA, DSC and TMA.
- > To make the students understand the theory of image formation in an optical microscope and to introduce other specialized microscopic techniques.
- > To make the students learn and understand the principle of working of electron microscopes and scanning probe microscopes.
- > To make the students understand some important electrical and optical characterization techniques for semiconducting materials.
- To introduce the students the basics of x-ray diffraction techniques and some important spectroscopic techniques.

UNITS	Course details				
UNIT I	Introduction – thermogravimetric analysis (TGA) – instrumentation –				
THERMAL	determination of weight loss and decomposition products – differential				
ANALYSIS	thermal analysis (DTA)- cooling curves – differential scanning				

	calorimetry (DSC) – instrumentation – specific heat capacity						
	measurements – determination of thermomechanical parameters.						
	Optical Microscopy: optical microscopy techniques - Bright field						
UNIT II	optical microscopy - Dark field optical microscopy - Dispersion						
MICROSCOPIC	staining microscopy - phase contrast microscopy -differential						
METHODS	interference contrast microscopy - fluorescence microscopy - confocal						
METHODS	microscopy digital holographic microscopy - oil immersion						
	objectives - quantitative metallography - image analyzer.						
UNIT III ELECTRON	SEM, EDAX, EPMA, TEM: working principle and Instrumentation –						
MICROSCOPY AND	sample preparation –Data collection, processing and analysis- Scanning						
SCANNING PROBE	tunnelingmicroscopy (STEM) - Atomic force microscopy (AFM) -						
MICROSCOPY	Scanning new field optical microscopy.						

UNIT IV ELECTRICAL METHODS AND OPTICAL CHARACTERISATION	Two probe and four probe methods- van der Pauw method – Hall probe and measurement – scattering mechanism – C-V characteristics – Schottky barrier capacitance – impurity concentration – electrochemical C-V profiling – limitations. Photoluminescence – light – matter interaction – instrumentation – electroluminescence – instrumentation – Applications.
UNIT V X-RAY AND SPECTROSCOPIC METHODS	Principles and instrumentation for UV-Vis-IR, FTIR spectroscopy, Raman spectroscopy, ESR, NMR, NQR, XPS, AES and SIMS-proton induced X-ray Emission spectroscopy (PIXE) –Rutherford Back Scattering (RBS) analysis-application - Powder diffraction - Powder diffractometer -interpretation of diffraction patterns - indexing - phase identification - residual stress analysis - Particle size, texture studies - X-ray fluorescence spectroscopy - uses.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

TEXT BOOKS	 R. A. Stradling and P. C. Klipstain. Growth and Characterization of semiconductors. Adam Hilger, Bristol, 1990. J. A. Belk. Electron microscopy and microanalysis of crystalline materials. Applied Science Publishers, London, 1979. Lawrence E. Murr. Electron and Ion microscopy and Microanalysis principles and Applications. Marcel Dekker Inc., New York, 1991 D. Kealey and P. J. Haines. Analytical Chemistry. Viva Books Private Limited, New Delhi, 2002. Li, Lin, Ashok Kumar Materials Characterization Techniques Sam Zhang; CRC Press,(2008).
REFERENCE BOOKS	 Cullity, B.D., and Stock, R.S., "Elements of X-Ray Diffraction", Prentice-Hall, (2001). Murphy, Douglas B, Fundamentals of Light Microscopy and Electronic Imaging, Wiley-Liss, Inc. USA, (2001). Tyagi, A.K., Roy, Mainak, Kulshreshtha, S.K., and Banerjee, S., Advanced Techniques for Materials Characterization, Materials Science Foundations (monograph series), Volumes 49 – 51, (2009). Volumes 49 – 51, (2009). Wendlandt, W.W., Thermal Analysis, John Wiley & Sons, (1986).

	5. Wachtman, J.B., Kalman, Z.H., Characterization of Materials,
	ButterworthHeinemann, (1993)
	1. https://cac.annauniv.edu/uddetails/udpg_2015/77.%20Mat%20Sci(AC).pdf
WEB	2. http://www.digimat.in/nptel/courses/video/113106034/L11.html
SOURCES	3. https://nptel.ac.in/courses/104106122
SOURCES	4. https://nptel.ac.in/courses/118104008
	5. https://www.sciencedirect.com/journal/materials-characterization

At the end of the course, the student will be able to:

CO1 Describe the TGA, DTA, DSC and TMA thermal analysis techniques and make interpretation of the results.	K1, K3
CO2 The concept of image formation in Optical microscope, developments in other specialized microscopes and their applications.	K2
CO3 The working principle and operation of SEM, TEM, STM and AFM.	K2, K3
CO4 Understood Hall measurement, four –probe resistivity measurement, C-V, I-V, Electrochemical, Photoluminescence and electroluminescence experimental techniques with necessary theory.	K3, K4
CO5 The theory and experimental procedure for x- ray diffraction and some important spectroscopic techniques and their applications.	K4,K5
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	2	2	3
CO2	3	3	3	2	2	2	2	2	2	2
CO3	3	3	2	2	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	2	2	2	3	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	2	2	3
CO2	3	3	3	2	2	2	2	2	2	2
CO3	3	3	2	2	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	2	2	2	3	2	2	2

Elective - List 3 – 19. MEDICAL PHYSICS I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Categ ory	L	T	P	Credit s	Inst. Hours	Marks
	MEDICAL PHYSICS	ELECTIVE	3	-	-	3	3	75

Pre-Requisites

Fundamentals of physiological concepts, Basics of instruments principle,

- To understand the major applications of Physics to Medicine
- ➤ To study the aid of different medical devices such as X-ray machines, gamma camera, accelerator and nuclear magnetic resonance.
- > To outline the principles of Physics of different medical radiation devices and their modern advances, especially in medical radiation therapy and different applications in medical physics.
- To introduce the ideas of Radiography.
- To form a good base for further studies like research.

UNITS	CourseDetails
X-RAYS AND	Electromagnetic Spectrum – Production of X-Rays – X-Ray Spectrum – Bremsstrahlung – Characteristic X-Ray – X-Ray Tubes – Coolidge Tube – X-Ray Tube Design – Thermistors – photo electric transducers – Photo voltaic cells – photo emissive cells – Photoconductive cells – piezoelectric transducer
UNIT II: BLOOD	Introduction −□sphygmomanometer − Measurement of heart rate − basic principles of electrocardiogram (ECG) −Basic principles of electroneurography (ENG) − Basic principles of magnetic resonance imaging (MRI).
UNIT III: RADIATION PHYSICS	Radiation Units – Exposure – Absorbed Dose – Rad to Gray – Kera Relative Biological Effectiveness –Effective Dose – Sievert (Sv) – Inverse Square Law – Interaction of radiation with Matter – Linear Attenuation Coefficient – Radiation Detectors –Thimble Chamber – Condenser Chambers – Geiger Counter – Scintillation Counter
MEDICAL IMAGING	Radiological Imaging – Radiography – Filters – Grids – Cassette – X-Ray Film – Film processing – Fluoroscopy – Computed Tomography Scanner – Principal Function – Display – Mammography – Ultrasound Imaging – Magnetic Resonance Imaging – Thyroid Uptake System – Gamma Camera (Only Principle, Function and display)

UNITV:	Principles of Ra	Principles of Radiation Protection – Protective Materials – Radiation Effects –							
RADIATION	Somatic – Gene	omatic – Genetic Stochastic and Deterministic Effect – Personal Monitoring							
PROTECTION	Devices – TLD	vices – TLD Film Badge – Pocket Dosimeter							
UNIT VI:	Expert Lecture	xpert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,							
PROFESSIONAL	Competitive	mpetitive Examinations, Employable and Communication Skill							
COMPONENTS	Enhancement, S	Social Accountab	oility and Patrio	tism					

	1.	Dr.K.Thayalan ,Basic Radiological Physics, Jayapee Brothers Medical
		Publishing Pvt. Ltd. New Delhi, 2003.
	2.	Curry, Dowdey and Murry, Christensen's Physics of Diagnostic
	_ •	Radiology: -LippincotWilliams and Wilkins, 1990.
	3	FM Khan, <i>Physics of Radiation Therapy</i> , William and Wilkins, 3rd ed,
TEXT BOOKS		2003.
	4	D. J. Dewhurst, An Introduction to Biomedical Instrumentation, 1st ed,
		Elsevier Science, 2014.
	5	R.S. Khandpur, <i>Hand Book of Biomedical Instrumentations</i> , 1st ed, TMG,
		New Delhi, 2005.
	1.	Muhammad Maqbool, <i>An Introduction to Medical Physics</i> , 1st ed, Springer
		International Publishing, 2017.
	2.	Daniel Jirák, FrantišekVítek, <i>Basics of Medical Physics</i> , 1st ed, Charles
		University, Karolinum Press, 2018
REFERENCE	3.	Anders Brahme, Comprehensive Biomedical Physics, Volume 1, 1st ed,
BOOKS		Elsevier Science, 2014.
	4.	K. Venkata Ram, Bio-Medical Electronics and Instrumentation, 1st ed,
		Galgotia Publications, New Delhi, 2001.
	5.	John R. Cameron and James G. Skofronick, 2009, Medical Physics, John
		Wiley Interscience Publication, Canada, 2nd edition.
	1.	https://ptel.ac.in/courses/108/103/108103157/
	2.	https://www.studocu.com/en/course/university-of-technology-
		sydney/medical-devices-and-diagnostics/225692
WEB SOURCES	3.	https://www.technicalsymposium.com/alllecturenotes_biomed.html
	4.	https://lecturenotes.in/notes/17929-note-for-biomedical-instrumentation-bi-
		by-deepraj-adhikary/78
	5.	https://www.modulight.com/applications-medical/

COURSE OUTCOMES:At the end of the course, the student will be able to:

CO1	CO1 Learn the fundamentals, production and applications of X-rays.				
CO2	Understand the basics of blood pressure measurements. Learn about sphygmomanometer, EGC, ENG and basic principles of MRI.	K2			
COZ	sphygmomanometer, EGC, ENG and basic principles of MRI.	K2			
CO3	Apply knowledge on Radiation Physics	К3			
CO4	Analyze Radiological imaging and filters	K4			
CO5	Assess the principles of radiation protection	K5			
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;				

MAPPING WITH PROGRAMME OUTCOMES:

Map course outcomes (CO) for each course with programme outcomes (PO) and programme

specific outcomes (PSO) in the 3-point scale of STRONG(3), MEDIUM(2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	1	2	3	3	1	3
CO2	3	3	3	2	1	2	3	3	1	3
CO3	3	3	3	2	1	2	3	3	1	3
CO4	3	3	3	2	1	2	3	3	1	3
CO5	3	3	3	1	1	2	3	3	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	1	2	3	3	1	3
CO2	3	3	3	2	1	2	3	3	1	3
CO3	3	3	3	2	1	2	3	3	1	3
CO4	3	3	3	2	1	2	3	3	1	3
CO5	3	3	3	1	1	2	3	3	1	3

Elective - List 3 –	I/II YEAR – SECOND/THIRD
20. SOLID WASTE MANAGEMENT	SEMESTER

Subject Code	Subject Name	Categor y	L	Т	P	Credits	Inst. Hours	Marks
	SOLID WASTE MANAGEMENT	ELECTIVE	3	-	-	3	3	75

Pre-Requisites								
Basic knowledge of solid waste and its type								
Learning Objectives								
To gain basic knowledge in solid waste m	anagement proced	dures	S					

- To gain industry exposure and be equipped to take up a job.
- To harness entrepreneurial skills.
- To analyze the status of solid waste management in the nearby areas.
- > To sensitize the importance of healthy practices in waste managements

UNITS Course Details					
UNIT I:	Introduction - Definition of solid waste - Types - Hazardous Waste:				
SOLID WASTE	Resource conservation and Renewal act – Hazardous Waste: Municipal				
MANAGEMENT	Solid waste and non-municipal solid waste.				

	T
UNIT II: SOLID WASTE CHARACTERISTICS	Solid Waste Characteristics: Physical and chemical characteristics - SWM hierarchy - factors affecting SW generation
UNIT III: TOOLS AND EQUIPMENT	Tools and equipment - Transportation - Disposal techniques - Composting and land filling technique
UNIT IV: ECONOMIC DEVELOPMENT	SWM for economic development and environmental protection Linking SWM and climate change and marine litter.
UNIT V: INDUSTRIAL VISIT	SWM Industrial visit – data collection and analysis - presentation
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 Handbook of Solid Waste Management /Second Edition, George Tchobanoglous, McGraw Hill (2002). Prospects and Perspectives of Solid Waste Management, Prof. B BHosett, New Age International (P) Ltd (2006). Solid and Hazardous Waste Management, Second Edition, M.N Rao, BSP /BS Publications Books (.(2020)). Integrated Solid Waste Management Engineering Principles and Management, Tchobanoglous, McGraw Hill (2014). Solid Waste Management (SWM), Vasudevan Rajaram, PHI learning private limited, 2016 Municipal Solid Waste Management, Christian Ludwig, Samuel Stucki, Stefanie Hellweg, Springer Berlin Heisenberg, 2012
REFERENCE BOOKS	 Solid Waste Management Bhide A. D Indian National Scientific Documentation Centre, New Delhi Edition 1983 ASIN: B0018MZ0C2 Solid Waste Techobanoglous George; Kreith, Frank McGraw Hill Publication, New Delhi 2002, ISBN 9780071356237 Environmental Studies Manjunath D. L. Pearson Education Publication, New Delhi, 20061SBN-I3: 978-8131709122 Solid Waste Management Sasikumar K. PHI learning, New Delhi, 2009 ISBN 8120338693
WEB SOURCES	 https://www.meripustak.com/Integrated-Solid-Waste-Management- Engineering-Principles-And-Management-Issues-125648 https://testbook.com/learn/environmental-engineering-solid-waste-management/ https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIs A- gM0iVpismAJN93CHA1sX6NuNeOKLXfQJ_jxHCOVH3QXjJ1i

ACq30KofoaAmFsEALw wcB

- 4. https://images.app.goo.gl/tYiW2gUPfS2cxdD28
- 5. https://amzn.eu/d/5VUSTDI

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1	Gained knowledge in solid waste management	K1							
CO2	Equipped to take up related job by gaining industry exposure	K5							
CO3	Develop entrepreneurial skills	K3							
CO4	Will be able to analyze and manage the status of the solid wastes in the nearby areas	K4							
CO5	Adequately sensitized in managing solid wastes in and around his/her locality	K5							
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;								

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	2	2	3
CO2	2	3	3	2	2	2	3	3	3	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	3	2	2	2	2	3	3	3	3	2
CO5	2	3	3	2	2	2	3	3	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	2	2	2	2	2	3
CO2	2	3	3	2	2	2	3	3	3	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	3	2	2	2	2	3	3	3	3	2
CO5	2	3	3	2	2	2	3	3	2	3

Elective - List 3 –21. SEWAGE AND WASTE	I/II YEAR –
WATER TREATMENT AND REUSE	SECOND/THIRD SEMESTER

Subject Code	Subject Name	Catego ry	L	T	P	Credit s	Inst. Hours	Marks
	SEWAGE AND WASTE WATER TREATMENT AND REUSE	ELECTIVE	3	-	-	3	3	75

Pre-Requisites
The requisites
Basic knowledge of classification of sewage and solid waste and its harmful effects.

- > To gain basic knowledge in sewage and waste water Treatment procedures
- To gain industry exposure and be equipped to take up job.
- > To harness entrepreneurial skills.
- > To analyze the status of sewage and waste water management in the nearby areas.
- To sensitize the importance of healthy practices in waste water management.

UNITS	Course Details									
UNIT I: RECOVERY & REUSE OF WATER	Recovery & Reuse of water from Sewage and Waste water: Methods of recovery: Flocculation - Sedimentation - sedimentation with coagulation - Filtration - sand filters - pressure filters - horizontal filters - vector control measures in industries - chemical and biological methods of vector eradication									
UNIT II: DISINFECTION	Disinfection: Introduction to disinfection and sterilization: Disinfectant - UV radiation - Chlorination - Antisepsis - Sterilant - Aseptic and sterile - Bacteriostatic and Bactericidal - factors affecting disinfection.									
UNIT III: CHEMICAL DISINFECTION	Chemical Disinfection: Introduction - Theory of Chemical Disinfection - Chlorination Other Chemical Methods - Chemical Disinfection Treatments Requiring - Electricity - Coagulation/Flocculation Agents as Pretreatment - Disinfection By-Products(DBPs)									
UNIT IV: PHYSICAL DISINFECTION	Physical Disinfection: Introduction - Ultraviolet Radiation - Solar Disinfection - Heat Treatment - Filtration Methods - Distillation - Electrochemical Oxidation Water Disinfection by Microwave Heating.									
UNIT V: INDUSTRIAL VISIT	Industrial visit – data collection and analysis - presentation									
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial									
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and									
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism									

	1. Drinking water and disinfection technique, Anirudhha Balachandra. CRC
	press (2013)
	2. Design of Water and Wastewater Treatment Systems (CV-424/434),
	ShashiBushan,(2015) Jain Bros
	3. Integrated Water Resources Management, Sarbhukan M M, CBS
TEXT BOOKS	PUBLICATION (2013)
	4. C.S. Rao, Environmental Pollution Control Engineering, New Age
	International, 2007
	5. S.P. Mahajan, Pollution control in process industries, 27th Ed. Tata McGraw
	Hill Publishing Company Ltd., 2012.
	1. Handbook of Water and Wastewater Treatment Plant Operations, Frank. R
	Spellman, CRC Press, 2020
	2. Wastewater Treatment Technologies, MritunjayChaubey, Wiley, 2021.
REFERENCE	3. Metcalf and Eddy, Wastewater Engineering, 4th ed., McGraw Hill Higher
BOOKS	Edu., 2002.
	4. W. Wesley Eckenfelder, Jr., Industrial Water Pollution Control, 2nd Edn.,
	McGraw Hill Inc., 1989
	5. Lancaster, Green Chemistry: An Introductory Text, 2nd edition, RSC

	publishing, 2010.
WEB SOURCES	 https://www.google.co.in/books/edition/Drinking_Water_DisinfectionTe_chniques/HVbNBQAAQBAJ?hl=en https://www.meripustak.com/Integrated-Solid-Waste-Management-Engineering-Principles-And-Management-Issues-125648? https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsAC-gM0iVpismAJN93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iACq30KofoaAmFsEALw_wcB https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsAC-gM0iVpismAJN93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iACq30KofoaAmFsEALw_wcB https://www.amazon.in/Design-Wastewater-Treatment-Systems-CV-424/dp/B00IG2PI6K/ref=asc_df_B00IG2PI6K/?tag=googleshopmob-21&linkCode=df0&hvadid=397013004690&hvpos=&hvnetw=g&hvrand=4351305881865063672&hvpone=&hvptwo=&hvqmt=&hvdev=m&hvdvcmdl=&hvlocint=&hvlocphy=9061971&hvtargid=pla-890646066127&psc=1&ext_vrnc=hi

<u>COURSE OUTCOMES:</u> At the end of the course, the student will be able to:

	Gained knowledge in solid waste management								
CO1		K1							
CO2	Equipped to take up related job by gaining industry exposure	K5							
CO3	Develop entrepreneurial skills	K3							
CO4	Will be able to analyze and manage the status of the solid wastes in the nearby areas	K4							
CO5	Adequately sensitized in managing solid wastes in and around his/her locality	K5							
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;								

MAPPING WITH PROGRAMME OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	3	3	2	3	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	2	2	2	2	3	3	3	3	2
CO4	3	2	3	3	2	3	3	3	3	2
CO5	2	2	2	2	3	3	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	3	3	2	3	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	2	2	2	2	3	3	3	3	2
CO4	3	2	3	3	2	3	3	3	3	2
CO5	2	2	2	2	3	3	2	2	2	2

Elective - List 3 –	I/II YEAR – SECOND/THIRD SEMESTER
22. SOLAR ENERGY UTILIZATION	

Subject Code	Subject Name	Categ	L	T	P	Credit s	Inst. Hours	Marks
	SOLAR ENERGY UTILIZATION	ELECTIVE	3	1	1	3	3	75

Pre-Requisites

Basic knowledge of heat energy, way of transfer of heat, solar energy, materials types

Learning Objectives

- > To impart fundamental aspects of solar energy utilization.
- > To give adequate exposure to solar energy related industries
- > To harness entrepreneurship skills
- > To understand the different types of solar cells and channelizing them to the different sectors of society
- > To develop an industrialist mindset by utilizing renewable source of energy

UNITS	Course Details
UNIT I: HEAT TRANSFER & RADIATION ANALYSIS	Conduction, Convection and Radiation – Solar Radiation at the earth's surface - Determination of solar time – Solar energy measuring instruments.
UNIT II: SOLAR COLLECTORS	Physical principles of conversion of solar radiation into heat flat plate collectors - General characteristics – Focusing collector systems – Thermal performance evaluation of optical loss.
UNIT III: SOLAR HEATERS	Types of solar water heater - Solar heating system - Collectors and storage tanks - Solar ponds - Solar cooling systems.
UNIT IV: SOLAR ENERGY CONVERSION	Photo Voltaic principles – Types of solar cells – Crystalline silicon/amorphous silicon and Thermo - electric conversion - process flow of silicon solar cells- different approaches on the process- texturization, diffusion, Antireflective coatings, metallization.
UNIT V: NANOMATERIALS IN FUEL CELL APPLICATIONS	Use of nanostructures and nanomaterials in fuel cell technology - high and low temperature fuel cells, cathode and anode reactions, fuel cell catalysts, electrolytes, ceramic catalysts. Use of Nano technology in hydrogen production and storage. Industrial visit – data collection and analysis - presentation
UNIT VI: PROFESSIONAL	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism

TEXT	1. Solar energy utilization -G.D. Rai –Khanna publishers – Delhi 1987.
BOOKS	2. Maheshwar Sharon, Madhuri Sharon, Carbon "Nano forms and Applications",
	Mc Graw-Hill, 2010.
	3. Soteris A. Kalogirou, "Solar Energy Engineering: Processes and Systems",
	Academic Press, London, 2009

	4. Tiwari G.N, "Solar Energy – Fundamentals Design, Modelling and applications,										
	Narosa Publishing House, New Delhi, 2002										
	5. Sukhatme S.P. Solar Energy, Tata McGraw Hill Publishing Company Ltd., New										
	Delhi, 1997.										
REFERENC	1. Energy – An Introduction to Physics – R.H.Romer, W.H.Freeman.(1976)										
E BOOKS	2. Solar energy thermal processes – John A.Drife and William. (1974)										
	3. John W. Twidell& Anthony D.Weir, 'Renewable Energy Resources,2005										
	4. John A. Duffie, William A. Beckman, Solar Energy: Thermal Processes,										
	4th Edition, john Wiley and Sons, 2013										
	5. Duffie, J.A., Beckman, W.A., "Solar Energy Thermal Process", John Wiley and										
	Sons,2007.										
WEB	1. https://pdfs.semanticscholar.org/63a5/a69421b69d2ce9f359bbfc86c63556f9a4fb										
SOURCES	2. https://books.google.vg/books?id=l-										
	XHcwZo9XwC&sitesec=buy&source=gbs_vpt_read										
	3. www.nptel.ac.in/courses/112105051										
	4. <u>www.freevideolectures.com</u>										
	5. http://www.e-booksdirectory.com										

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1	Gained knowledge in fundamental aspects of solar energy utilization	K1								
CO2	2 Equipped to take up related job by gaining industry exposure									
CO3	Develop entrepreneurial skills	K5								
CO4	Skilled to approach the needy society with different types of solar cells	K4								
CO5	O5 Gained industrialist mindset by utilizing renewable source of energy K2, K3									
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;									

MAPPING WITH PROGRAMME OUTCOMES:

Map course outcomes **(CO)** for each course with programme outcomes **(PO)** and programme specific outcomes **(PSO)** in the 3-point scale of STRONG(3), MEDIUM(2) and LOW (1).

	` ' '					(//						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	3	2	3	3	3	2	2	2	3	2		
CO2	2	3	2	2	3	3	2	3	2	2		
CO3	2	3	2	2	2	2	3	3	3	2		
CO4	2	2	2	3	2	3	2	3	3	2		
CO5	2	2	3	2	3	3	3	3	3	3		

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	3	3	2	2	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	2	2	2	3	2	3	2	3	3	2
CO5	2	2	3	2	3	3	3	3	3	3

യുകയുക

LIST OF ENTREPRNEURSHIP ELECTIVES (Fourth Semester)

Twenty percentage of the course content is theory and remaining eighty percent is practical / device fabrication / innovative product / entrepreneurial projects

23. Arudino- Applications

24. PicMicrocontroller Applications

(23).ARDUINO - APPLICATIONS

L	Т	Р	С
1	1	2	3

a. Course Code:

b. Course objectives:

- 1. To learn the basics of Arduino and its programming
- 2. To create different application Arduino circuits

c. Course prerequisites:

Basics of discrete components, LEDs and LCDs

d. Course Outcome

On the successful completion of the value added course, the learner will be able to

CO1: Use simple circuits in Arduino (K4)

CO2: Evaluate the working of application circuits (K5)

CO3: Create new circuit to simplify the process (K6)

e. Course outline (contact hours: 15)

- 1. Construct LED circuit with PUSH button switch.
- 2. Construct brightness controlled LED bar graph
- 3. Construct light and sound alarm by sensing moisture using analog sensor
- 4. Construct a piezoelectric buzzer
- 5. Construct a joystick-controlled laser pan-and-tilt
- 6. Construct LCD screen to display messages
- 7. Construct a weather monitoring station

Book for Reference:

1. Mark Geddes, ARDUINO project Handbook, No starch press, San Francisco (2016)

f. Mapping of COs to POs & PSOs with correlation level and Cognitive level of COs

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
-------	-----	-----	-----	-----	-----	-----	-----	-----

CO1(K4)	Н	L	Н	L	L	L	Н	Н
CO2(K5)	Н	L	Н	L	M	L	Н	Н
CO3(K6)	Н	L	Н	L	L	L	Н	Н

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1(K4)	Н	L	Н	L	L	L	Н	Н
CO2(K5)	Н	L	Н	L	M	L	Н	Н
CO3(K6)	Н	L	Н	L	L	L	Н	Н

(24). PIC Microcontroller - Applications

L	Τ	Р	С
1	-	2	3

a. Course Code:

b. Course objectives:

- > To teach functioning of computer, microcontroller architecture, programming and compiling
- To construct two applications based PIC16F877a microcontroller

c. Course Outcome

On the successful completion of the value added course, the learner will be able to

CO1: Explain the working microprocessor and microcontroller systems (K2)

CO2: Write program for desired applications in development software and in hardware (K4)

CO3: Construct any two specialised application as real device and demonstrate its function (K6)

d. Course outline (contact hours: 15)

Module 1: Personal computer – word-processor operation – Microprocessor systems – microcontroller Applications (3 hours)

Module 2: Microcontroller architecture – program operations (4 hours)

Module 3: Hardware design – program execution – assembly language (4 hours)

Module 4: Program development – MPLAB IDE (4 hours)

Applications (Any Two applications only)

- 1. Servo Motor control using PIC16F877a
- 2. Interfacing humidity and temperature sensors with PIC16F877a
- 3. Any other application by student's choice
- 4. Any other application suggested by the course teacher

Book for Reference:

- 1. Martin Bates, PIC Microcontrollers-*An Introduction to Microelectronics*, Third Edition (2011), Elsevier, Oxford.
- 2. https://www.microchip.com/en-us/education/academic-program
- 3. https://www.microchip.com/en-us/tools-resources/develop/mplab-x-ide

e. Mapping of COs to POs & PSOs with correlation level and Cognitive level of COs

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1(K2)	Н	L	Н	L	L	L	Н	M
CO2(K4)	Н	L	Н	L	M	L	Н	M
CO3(K6)	Н	L	Н	L	L	L	Н	M

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1(K2)	Н	L	Н	L	L	L	Н	L
CO2(K4)	Н	L	Н	L	M	L	Н	L
CO3(K6)	Н	L	Н	L	L	L	Н	L

LIST OF GENERIC ELECTIVES (First and Second Semesters)

- 25. Matlab Programming
- 26. Data Analysis and Techniques
- 27. Density Functional Theory
- 28. Material Processing and characterization Techniques
- 29. X-ray Crystallography

(25) MATLAB PROGRAMMING

L	Т	Р	С
ω	ı	1	3

f. Course Code:

g. Course objectives:

- 1. To learn the matrix creation, shape changes, numeric types, formats, character and string by performing practicals
- 2. To write a simple programs with operators, m-file creation, simple programes and to import data for plotting

h. Course prerequisites:

Algebra of Matrices and definition of square matrices

i. Course Outcome

On the successful completion of the value added course, the learner will be able to

CO1: Perform the simple matrix operations and prgroms (K4)

CO2: Evaluate the numeric, logic types, characters and strings (K5)

CO3: Construct a m-file and plots (K6)

j. Course outline (contact hours: 15)

Module 1: Create matrices, concatenate and form block diagonal matrix

Module 2: Apply different functions to transpose, rotate, flip matrics

Module 3: Identify the numeric types, complex numbers and convert character string to numeric and numeric to string

Module 4: Perform simple arithmetic, logical operations using operators

Module 5: Write programs with loop controls; for, while, continue and break

Module 6: Create a simple m-file for different operations of matrix

Module 7: Import data, analyse and plotting and exporting

Book for Reference:

1. MATLAB programming: The Language of Technical Computing, The MathWorks (2005)

k. Mapping of COs to POs & PSOs with correlation level and Cognitive level of COs

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1(K4)	Н	L	Н	L	L	L	Н	M
CO2(K5)	Н	L	Н	L	M	L	Н	M
CO3(K6)	Н	L	Н	L	L	L	Н	M

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1(K4)	Н	L	Н	L	L	L	Н	L
CO2(K5)	Н	L	Н	L	M	L	Н	L
CO3(K6)	Н	L	Н	L	L	L	Н	L

(26) DATA ANALYSIS AND TECHNIQUES

OBJECTIVES:

L	T	P	C
3	1	1	3

- To learn the importance of error analysis, and various methods to analyse error
- To effectively learn statistical tools needed for data analysis.
- To understand the behaviour of distribution of data

UNIT-I: ERRORS AND ITS IMPORTANCE

Approximate numbers and Significant Figures – Rounding of Numbers – Absolute, Relative and Percentage errors – Relation between Relative error and the significant figures – The general formula for errors – Formulas to the fundamental operations of arithmetic and logarithms – Accuracy in the evaluation of a Formula – Accuracy in the Determination of arguments from a tabulated function – Accuracy of Series approximations – Errors in Determinants.

UNIT-II: ERRORS AND CURVE FITTING

Errors of Observations and Measurement – The law of accidental errors – The probability of errors lying between given limits – The probability equation – The law of error of a linear function of independent quantities – The probability integral and its evaluations – The probability of hitting a target – The principle of least squares – Weighted observations – Residuals – The most probable value of a set of direct measurements – Law of error for residuals –

Agreement between theory and experience.

UNIT-III: PROBABILITY BASICS

Chance Experiments and Events – Definition of Probability – Basic Properties: Addition and multiplication laws of Probability – Conditional Probability, population, variants, collection, tabulation and graphical representation of data– Some General Probability Rules – Estimating Probabilities Empirically using Simulation -frequency distributions, averages or measures of central tendency, arithmetic mean, properties of arithmetic mean, median, mode, geometric mean, harmonic mean, dispersion, standard deviation, root mean square deviation, standard error and variance, moments, skewness and kurtosis.

UNIT-IV: PROBABILITY DISTRIBUTIONS

Random variables – Probability distribution of discrete random variables – Probability distribution for continuous random variables – Mean and Standard deviation of a random variable - Binomial and geometric distribution – Normal distributions - Poisson distribution - Gaussian distribution, exponential distribution – additive property of normal variants, confidence limits, Bi-varite distribution, Correlation and Regression, Chi-Square distribution.

UNIT-V: ERRORS IN MEASUREMENTS

Measurement, Direct and Indirect – Precision and Accuracy – Measures of Precision – Relations between the Precision measures – Geometric significance of μ , r and η – Relation between probable error, and the probable errors of the arithmetic and weighted means – Computation of the precision measures from the residuals – The combinations of sets of measurements when the P.E.'s of Sets are given – The probable error of any function of independent quantities whose P.E.'s are known – The two fundamental problems of indirect measurements – Rejection of observations and measurement.

BOOKS FOR REFERENCE:

- 1. Introduction to Statistics and Data Analysis, R. Peck, C. Olsen and J.L. Devore, Cengage Learning, 5th Edition, 2014
- 2. Donald L. Smith: Probability statistics and data uncertainties in nuclear science and technology, American nuclear society, 1991
- 3. Numerical Mathematical Analysis, J. B. Scarborough, Oxford and IBH Publishing Company, 6th Edition, 1990
- 4. Semyen G. Rabinovich: Measurement errors and Uncertainties –theory and practice, Springer, 2005

(27) DENSITY FUNCTIONAL THEORY (Theory)

L	T	P	C
3	ı	ı	3

a. Course Code:

b. Course Objectives

- 1. To learn the formalism for many electrons and foundations of density functional theory
- 2. To learn approximation leading to functional

3. To familiarize with basis functions and potentials

c. Learning Progression:

Exactly solvable simple quantum mechanical systems; Particle in a box, Linear Harmonic Oscillator, Hydrogen atom and Rigid rotator

d. Course Outcomes (COs)

At the end of the Course, the student will be able to -

- **CO1:** Recall the Born-approximation, Schrodinger equations, basis functions, Slater's rules, LD and GG approximations, KS equation, Euler-Lagrange equation
- **CO2:** Explain matrix solutions of the time independent non-relativistic Schrodinger equation of many electrons, functionals
- CO3: Identify the various simplification of many body problems with reasonable conceptual assumptions, mathematical approximation and implementation of it in computational
- CO4: Analyse the total energy, Fermi surface, band gap, DOS, p-DOS

e. Course Outline:

UNIT - I: INTRODUCTION TO MANY ELECTRON PROBLEMS

- Module 1.1: Hartree-Fock (HF) theory (2 lectures)
- Module 1.2: Configuration Interaction (CI) Fundamental concept Variational theorem Variational theorem for ground state reducing the CI space Determinant CI (7 lectures)

UNIT - II: FOUNDATIONS OF DFT

- Module 2.1: The Thomas-Fermi model: precursor to modern DFT Functional and functional derivatives, Euler Lagrange equation (3 lectures)
- Module 2.2: Hohenberg-Kohn Theorem degenerate ground state N and υ representability of densities Current Density Functional Theory (5 lectures)

UNIT III: KOHN-SHAM (KS) EQUATION

Module 3.1: Effective exact single particle method to the many body problem – Exchange and correlation energies – Interpretation of KS eigenvalues: Koopman's theorem, Ionization energy, Fermi surface, band gap(9 lectures)

UNIT IV: APPROXIMATIONS TO FUNCTIONALS

- Module 4.1: Local approximation: local density approximation (LDA) Semi-local approximation (3 lectures)
- Module 4.2: Generalized gradient approximation (GGA) Non-local approximation (3lectures)
- Module 4.3: hybrid functional Self interaction Correction (3 lectures)

UNIT - V: INTRODUCTION TO TIME DEPENDENT DFT

- Module 5.1: Runge-Gross Theorem Time-Dependent Kohn- Sham Equations Practical implementation of DFT methods- General scheme for solving Kohn-Sham Full potential and pseudo potential methods (7 lectures)
- Module 5.2: Basis functions: Gaussian, LAPW equation (2 lectures)

BOOKS FOR STUDY:

- 1. http://vergil.chemistry.gatech.edu/notes/ci.pdf (Unit I)
- 2. Density Functional Theory: An Advanced Course, Eberhard Engel and Reiner M. Dreizler, Springer-Verlag, 2011 Unit 2: chapter 2 and Unit 3: chapter 3 (relevant sections only) Unit 5: Chapter 7, Section 7.1, 7.2
- 3. http://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_dft.pdf
 Unit 4: relevant sections

BOOKS FOR REFERENCE:

- 1. Computational Physics, J. M. Thijssen, Cambridge University Press, 1999
- 2. Introduction to Computational Chemistry, Frank Jensen, John Wiley and Sons, 2017
- 3. Computational Materials Science: An Introduction, Second Edition, June Gunn Lee, CRC Press, Taylor and Francis Group, 2017.

f. Mapping of COs to POs & PSOs with correlation level and Cognitive level of COs

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	L	M	L	Н	L	M	M	L
CO2	L	Н	M	L	L	M	M	M
CO3	L	M	Н	L	L	L	M	M
CO4	L	L	Н	L	Н	L	M	Н

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	L	L	M	L	Н	M	M	L
CO2	L	Н	Н	L	L	M	Н	M
CO3	L	L	Н	L	L	L	Н	Н
CO4	L	L	Н	L	M	L	Н	Н

(28) MATERIALS PROCESSING AND CHARACTERISATION TECHNIQUES

L	T	P	C
3	-	-	3

OBJECTIVES:

- To impart knowledge on various materials growth, synthesis and processing techniques
- To learn the structural, morphology, and surface characterization techniques.

UNIT-I: CRYSTAL GROWTH

Significance of crystal growth - Naturally occurring crystal growth processes - Crystal growth processes in laboratory and industrial scale - Classification of crystal growth methods - Growth from solutions -Nucleation: Homogeneous and heterogeneous, Solubility phase diagram-Saturation-Supersaturation- Metastable zone width-Slow evaporation and slow cooling methods, Growth from gel-Growth from flux-Growth from melt- Bridgeman-Stockbarger method-Czochralski pulling method- Growth from vapour - Sublimation method.

UNIT-II:VACUUMTECHNIQUES

Units and range of vacuua – Formulas for important quantities – Qualitative description of pumping process – Surface processes and outgassing – Gas flow mechanism – Classification of pumps: Positive displacement pumps – Kinetic pumps – Entrapment pumps - Classification of pressuregauges: Total pressure gauges – Hydrostatic pressure gauges - Thermal conductivity gauges – Ionization gagues – Vacuum system: simple rotary, diffusion, turbo molecular, ultrahigh vacuumand cryo-pumpedsystems.

UNIT-III: FABRICATION OF THIN FILMS AND PREPARATION OF NANOMATERIALS

Plasma arc discharge-sputtering-chemical vapour deposition-pulsed laser deposition-molecular beam epitaxy-Electrochemical deposition- SILAR method; Solid-State Reaction - Sol-Gel Technique - Hydrothermal growth - Ball Milling - Combustion synthesis - Sonochemical method - Microwave synthesis - Co-precipitation.

UNIT-IV: CHARACTERIZATION TOOLS-I

Working principles, measurement and data analysis; powder x-ray diffraction and single crystal x-ray diffraction. Working principles, measurement and data analysis; Thermogravimetric Analysis (TGA), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC)

UNIT-IV: CHARACTERIZATION TOOLS-II

Working principles, measurement and data analysis; SEM and EDS

Working principles, measurement and data analysis; AFM

BOOKS FOR REFERENCE:

- 1. Maissel and Glange, Handbook of Thin Film Technology, McGraw Hill, First Edition, 1970.
- 2. A. Roth, Vacuum Technology, North Holland, Third Edition, 1990
- 3. Pipko A, Pliskosky V, Fundamentals of VacuumTechniques, MIR Publishers, First Edition, 1984
- 4. K. L. Chopra, Thin Films Phenomena, McGraw Hill, First Edition, 1969
- 5. D. K. Avasthi, A. Tripathi, A.C. Gupta, Ultra High VacuumTechnology, Allied Publishers, Private Limited. 2002
- 6. Kasturi Lal Chopra, SuhitRanjan Das, Thin Film Solar Cells, Plenum Press, New York, 1983
- 7. A.Chambers, R.K.Fitch and B.S.Halliday, Basic Vacuum Technology, IOP Publishing Ltd ,2ND Edition ,1998
- 8. A.Roth, Vacuum Technology, Elsevier Science, 3rd Edition, 1990
- 9. Edited by C. Suryanarayana, Non-equilibrium processing of materials (Chapter 6) Pergamon, 1999
- 10. P.V. Ananthapadmanabhan and N. Venkataramani, Thermal plasma processing Pergamon materials series Vol 2, 1999
- 11. J. Reece Roth, Industrial plasma engineering Applications to Nonthermal plasma processing (Vol. 2)Institute of Physics Publishing, Bristol, 2001
- 12. Maher I. Boulos, Pierre Fauchais and Emil Pfender, Thermal plasmas—Fundamentals and Applications (Vol. 1), Springer Science, NY, 1994
- 13. Edited by Rainer Hippler, Sigismund Pfau, Martin Schmidt, Karl H. Schoenbach, Low temperature plasma physics, Wiley-Vch, Berlin, 2001

14.

(29). X-RAY CRYSTALLOGRAPHY

L	T	P	C
3	ı	ı	3

OBJECTIVES:

- To study the production of X-rays, crystals and its symmetry and their properties.
- To understand the X-ray intensity data collection techniques, data reduction and structure solution and refinement from crystallographic method.

UNIT - I: BRAVAIS LATTICES AND SYMMETRY ELEMENTS IN 3 DIMENSIONS

Development of 3D lattices – Choice axes and unit cells - seven primitive lattices – lattice centering – nonprimitive lattices – number of lattice points per unit cell – fractional coordinates – unit cell calculations – interplanar spacing. Symmetry Elements – macroscopic symmetry elements – Combinations of macroscopic symmetric operations – rotation at a point – axial combinations – rotations and reflection – rotation and inversion – proper and improper rotations – reflection and inversion – classification of symmetry operations

UNIT - II: DERIVATION OF POINT GROUPS

Conventional method of derivation of point groups – Point group notations – Linear orthogonal transformation – symmetry operations and group theory – matrix representation of symmetry operations - matrix method derivation of point group – equivalent positions in point groups – Laue symmetry – point groups, crystal classes and crystal systems

UNIT - III: DERIVATION OF SPACE GROUPS

Macroscopic symmetry elements – combination of symmetry operations – general equivalent positions and special positions – systematic absences – space groups – classification – derivation of space groups - Crystal planes and zones – crystal directions and zone axes – Miller-Bravais indices – transformation of indices – crystal projections – reciprocal lattices

UNIT – IV: DIFFRACTION METHODS, X-RAY INTENSITY, STRUCTURE FACTOR

X-ray diffraction – Bragg's law – Laue equations – diffraction condition – Diffraction experiments – powder method, indexing powder lines – Laue method and indexing Precession method – x-ray diffractometers – Neutron and Electron diffraction – Structure factor – Lorentz factor – polarization factor – temperature factor – multiplicity factor – absorption factor – extinction – R-factor

UNIT - V: CRYSTAL STRUCTURE ANALYSIS AND REFINEMENT

Trial and error method – Patterson function – heavy atom method – isomorphous replacement – superposition method – direct methods – Successive and difference Fourier synthesis – least squares refinement – constrained least squares refinement method – automation of structural analysis

BOOKS FOR REFERENCE:

1. Essentials of Crystallography – M.A. Wahab, Narosa Publishing House, New Delhi, Second Edition 2014

- 2. X-ray Structure Determination G.H. Stout and L.H.Jensen, John Wiley Publications, Second Edition, 1989.
- 3. Fundamentals of Crystallography C. Giacovazzo, Oxford Press, Second Edition, 2011.
- 4. Structure Determination by X-ray Crystallography Ladd and Palmer, Plenum Publishing Corporation, Second Edition, 2013.
- 5. X-ray Crystallography- Woolfson, Cambridge University Press Publications. Second Edition, 1997.
- 6. Elements of X-ray Crystallography Leonid V. Azaroff, McGraw Hill Publications, 1968.
- 7. Crystal Structure analysis for Chemist and Biologist J.P. Glusker, M. Lewis and M. Rossi, VCH Publishers Inc, 1994.
- 8. Crystal, X-ray and Proteins D. Sherwood, and J. Cooper, Oxford University Press, 2010.
- 9. An Introduction to Crystallography F.C. Phillips, John Wiley Publications, 1971.
- 10. International tables for Crystallography.

LIST OF SEC (SKILL ENHANCEMENT COURSES) (Second, Third and Fourth semesters)

- 30. Powder x-ray diffraction analysis and Rietveld refinement
- 31. NI Labview Applications
- 32. Characterization of Battery, Supercapacitors, and Fuel cell

(30) POWDER X-RAY DIFFRACTION ANALYSIS AND RIETVELD REFINEMENT

L	Т	Р	С
2	-	-	2

a. Course Code:

b. Course objectives:

- 1. To learn the powder diffraction essentials and various factors contributions to inorganic samples to x-ray diffraction peaks
- 2. To learn unit cell parameters, structure, size and strain determination from diffraction pattern and elucidation of structural parameters from the Rietveld refinement

c. Course prerequisites:

Production and properties of x-rays, lattice, basis, crystal structure, Bravis lattice

d. Course Outcome

On the successful completion of the value added course, the learner will be able to

- CO1: Understand the Bragg's law and factors contributing to the line profile of the diffracted XRD patterns (K4)
- CO2: Evaluate crystal system from XRD patterns, lattice parameters, crystallite size, strain (K5)
- CO3: Construct input file and carry out the Rietveld refinement on any powder XRD data (K6)

e. Course outline (contact hours: 30)

Module 1: Lattice and crystal systems, lattice planes and directions, planes of zone and

interplanar spacing (4 Lectures)

Module 2: Diffraction from crystals, scattering by unit cell (3 lectures)

Module 3: X-ray diffractometer essentials, estimation of x-ray diffraction intensity from a

polycrystalline sample, factors-structure, polarization, multiplicity, Lorentz, absorption, temperature and formula for diffracted intensity (5 lectures)

Module 4: Crystal structure determination – cubic, tetragonal and hexagonal systems and

Hanawalt method (3 lectures)

Module 5: Determination of lattice parameter of polycrystalline sample, quantitative analysis

of powder mixtures, determination crystal size and lattice strain (4 lectures)

Module 6: Packages Unit cell, Treor, Dicvol, (2 lectures)

Module 7: Rietveld refinement package FULLPROF suite and JANA2020

BOOK FOR REFERENCE:

1. Yoshio Waseda, Eiichiro Matsubara and Kozo Shinoda, X-ray Diffraction and Crystallography, Springer Heidelberg (2011)

- 2. Crystallographic softwares www.iucr.org
- 3. Rietveld refinement FULLPROF suite www.ill.eu
- 4. Rietveld refinement JANA2020 www.jana.fzu.cz

f. Mapping of COs to POs & PSOs with correlation level and Cognitive level of COs

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1(K4)	L	M	L	Н	L	M	M	L
CO2(K5)	L	Н	M	L	L	M	M	M
CO3(K6)	L	M	Н	L	L	L	M	M

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1(K4)	L	L	M	L	Н	M	M	L
CO2(K5)	L	Н	Н	L	L	M	Н	M
CO3(K6)	L	L	Н	L	L	L	Н	Н

(31) NI LabVIEW - APPLICATIONS

L	Т	Р	С
-	1	2	1

g. Course Code:

h. Course objectives:

- > To teach graphical representation data acquisition and measurement control
- > To create two applications using their own programme

i. Course Outcome

On the successful completion of the value added course, the learner will be able to

CO1: Explain the working NI virtual instrument functions (K2)

CO2: Write program for desired applications in software and using hardware (K4)

CO3: Construct any two specialised application as real device and demonstrate its function (K6)

j. Course outline (contact hours: 15)

Module 1: Building virtual instrument fundamentals, Data types and their graphical representation in user interfaces (3 hours)

Module 2: Digital and analog I/O and internal functions (3 hours)

Module 3: Building control panel and using VI (3 hours)

Module 4: Installing and configuring data acquisition hardware – data acquisition concepts – Triggering (3 hours)

Applications (Any two applications only)

- 8. Thermocouple Data Acquisition program
- 9. Temperature control of furnace
- 10. Measurement of current and voltage from analog meters through compact DAQ
- 11. Any other application by student's choice
- 12. Any other application suggested by the course teacher

Book for Reference:

- 1. Getting Started with LabVIEW, National Instruments, July 2000 Edition Part Number 321527D-01
- 2. Data Acquisition Basic Manual, National Instrument, January 1998 Edition Part Number 320997C-01
- 3. https://www.ni.com/en-in/support/downloads/software-products/download.labview-student-software-suite.html#352828
- 4. https://www.ni.com/docs/en-S/bundle/labview/page/lvhowto/lv_getting_started.html

k. Mapping of COs to POs & PSOs with correlation level and Cognitive level of COs

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1(K2)	Н	L	Н	L	L	L	Н	Н
CO2(K4)	Н	L	Н	L	M	L	Н	Н
CO3(K6)	Н	L	Н	L	L	L	Н	Н

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1(K2)	Н	L	Н	L	L	L	Н	Н
CO2(K4)	Н	L	Н	L	M	L	Н	Н
CO3(K6)	Н	L	Н	L	L	L	Н	Н

(32) CHARACTERISATION OF BATTERY, SUPERCAPACITORS AND FUEL CELL

L	T	P	С
2	-	-	2

a. Course Code:

b. Course objectives:

To teach the basic of electrochemistry with 2 and 3 electrodes and impedance spectroscopy and analysis of the data obtained from measurement.

c. Course Outcome

On the successful completion of the value added course, the learner will be able to

CO1: Explain the basic principles of electrochemistry for energy storages aspects (K2)

CO2: Measure the CV and impedance spectra for suitable electrochemical conditions (K3)

CO3: Determine the performance parameters from CV and EIS measurements (K5)

d. Course outline (contact hours: 30)

Module 1: Electrochemical cells and reactions, cell potential, reference and counter electrode, potential as electron energy, current as reaction rate, control of current-potential curves – mass-transfer reactions (4 hours)

Module 2: Faradaic and non-Faradaic process, factors affecting rates, electrochemical cell types, two, three electrode cells, electrode/solution interface (6 hours)

Module 3: Basic electrochemical thermodynamics, reversibility, free energy and cell emf, emf and concentration, formal potential reference electrodes (6 hours)

Module 4: Basic kinetics of electrode reactions, dynamic equilibrium, Arrhenius equation and potential energy surface, essentials of electrode reactions, Butler-Volmer model (5 Lectures)

Module 5: Electrochemical Impedance spectroscopy, cell impedance, review ac circuits, equivalent circuits, measurement of resistance and capacitance (5 hours)

Module 6: AC voltametry, reversible systems, quasireversible and irreversible systems, cyclic ac voltametry (4 lectures)

BOOK FOR REFERENCE:

1. Allen J. Bard, Larry R. Faulkner, Henry S. White, Electrochemical Methods Fundamentals and Applications, Third Edition, John Wiley & Sons Ltd (2022)

e. Mapping of COs to POs & PSOs with correlation level and Cognitive level of COs

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1(K2)	L	M	L	Н	L	M	M	L
CO2(K3)	L	Н	M	L	L	M	M	M
CO3(K5)	L	M	Н	L	L	L	M	M

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1(K2)	L	L	M	L	Н	M	M	L
CO2(K3)	L	Н	Н	L	L	M	Н	M
CO3(K5)	L	L	Н	L	L	L	Н	Н

LIST OF VALUE ADDED COURSES (Second and Third semesters)

Value-added courses are certificate courses and the credits earned through them are not included in the 91 credits. These are mandatory extra-credit certificate courses.

- 33. SEM- microstructure analysis and EDS composition analysis
- 34. Single crystal X-ray diffraction analysis with SHELX
- 35. NMR spectral Analysis
- 36. Raman spectral analysis

(33) SEM-MICROSTRUCTURE ANALYSIS AND EDS-COMPOSITION ANALYSIS

L	Τ	Р	С
2	-	-	2

g. Course Code:

h. Course objectives:

- > To learn working principle of various components of SEM and EDS and their maximum operation conditions to record quality SEM micrograph
- > To provide the hands-on experience of estimation of the average grain/particle size and its distribution and elemental quantification of the material

i. Course Outcome

On the successful completion of the value added course, the learner will be able to

CO1: the working principle of SEM and EDS (K2)

CO2: e the micrographs and EDS spectra (K3)

CO3: the average grain/particle size, its distribution and elemental quantification. (K5)

j. Course outline (contact hours: 30)

Module 1: Limitations of the human eye, optical microscope (2 hours)

Module 2: Functions of SEM components and SEM imaging modes (3 hours)

Module 3: Filaments; Tungsten, LaB₆ and FE guns – electron lenses; focusing, magnification, aperture, aberrations – probe diameter and probe current (45 lectures)

Module 4: Performance of SEM modes; resolution mode, high current mode, depth of focus,

low voltage and HR (4 hours)

- Module 5: E-beam interaction with specimen influence of beam and specimen on interaction volume backscattered electrons secondary electrons (4 hours)
- Module 6: Imaging process and detectors (3 hours)
- Module 7: Continuous and characteristic x-ray production depth of x-ray production (4 hours)
- Module 8: Energy dispersive x-ray spectra, mapping and quantitative composition analysis (4 hours)
- Module 9: Average grain/particle size estimation using ImageJ software (2 hours)

BOOK FOR REFERENCE:

- 1. Joseph Goldstein, Dale Newbury, David loy, Charles Lyman, Patrick Echlin, Eric Lifshin, Linda Sawyer and Joseph Michael, Scanning Electron Microscopy and x-ray microanalysis, Third Edition, Springer Science, New York (2003)
- 2. Ray F. Egerton, Physical Principles of Electron Microscopy, Springer Science (2005)Rietveld
- 3. ImageJ software www.imagej.net

k. Mapping of COs to POs & PSOs with correlation level and Cognitive level of COs

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1(K2)	L	M	L	Н	L	M	M	L
CO2(K3)	L	Н	M	L	L	M	M	M
CO3(K5)	L	M	Н	L	L	L	M	M

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1(K2)	L	L	M	L	Н	M	M	L
CO2(K3)	L	Н	Н	L	L	M	Н	M
CO3(K5)	L	L	Н	L	L	L	Н	Н

(34) SINGLE CRYSTAL X-RAY DIFFRACTION ANALYSIS WITH SHELX

L	T	P	С
2	-	-	2

a. Course Code:

b. Course objective:

To teach space groups and working of single crystal x-ray diffraction and structure determination of crystals and small molecules

c. Course outcome

On the successful completion of NMR spectral analysis (value added certificate course), the learner will be able to

- Explain the symmetry elements, deduction of space group of materials and single x-ray diffraction (K2)
- CO2 Structure elucidation from single crystal diffraction data using SHELXTL (K4)

CO3 Determine the structure of small molecules using APEX (K5)

d. Course outline (contact hours: 30)

Module 1: Symmetry Elements – macroscopic symmetry elements - Combinations of macroscopic symmetric operations – rotation at a point – axial combinations – rotations and reflection – rotation and inversion – proper and improper rotations – reflection and inversion – classification of symmetry operations (6 hours)

Module 2: Derivation of Space Groups: Macroscopic symmetry elements – combination of symmetry operations – general equivalent positions and special positions – systematic absences – space groups – classification – derivation of space groups (6 hours)

Module 3: Single crystal x-ray diffraction fundamental, instrumentation and experimental procedure (4 hours)

Module 4: A guide to using SHEXTL structural analysis (5 hours)

Module 5: APEX software – a guide to using it (4 hours)

Module 6: SHELX - a guide to structure elucidation of small molecules (5 hours)

BOOK FOR REFERENCE:

- 1. M.A. Wahab, Essentials of Crystallography, Narosa Publishing House, New Delhi, Second Edition 2014
- 2. George M. Sheldrick, A short history of SHELX, Acta Cryst. (2008). A64, 112-122
- 3. George M. Sheldrick, Crystal structure refinement with SHELXL, Acta Cryst. (2008). A64, 112–122.
- 4. https://xray.uky.edu/Resources/manuals/Shelxtl-manual.pdf
- 5. https://www.bruker.com/en/products-and-solutions/diffractometers-and-x-ray-microscopes/single-crystal-x-ray-diffractometers/sc-xrd-software/apex.html
- 6. https://shelx.uni-goettingen.de/

e. Mapping of COs to POs & PSOs with correlation level and Cognitive level of COs

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1 (K2)	L	M	L	Н	L	M	M	L
CO2 (K4)	L	Н	M	L	L	M	M	M
CO3 (K5)	L	M	Н	L	L	L	M	M

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1 (K2)	L	L	M	L	Н	M	M	L
CO2 (K4)	L	Н	Н	L	L	M	Н	M
CO3 (K5)	L	L	Н	L	L	L	Н	Н

(35) NMR SPECTRAL ANALYSIS

L	T	P	C
2	-	-	2

f. Course Code:

g. Course objective:

1. To learn the basics of NMR spectroscopy and analysis of 1D and 2D NMR spectra.

h. Couse prerequisites:

Basic knowledge of Quantum mechanics, Mathematics, Chemistry, and computer programming.

i. Course outcome

On the successful completion of NMR spectral analysis (value added certificate course), the learner will be able to

col understand the concepts of new techniques, such as NMR

CO2 analysis and interpret the NMR spectra

CO3 Design the new problem and solve using NMR technique

CO4 Simulate the 1D NMR spectra using open-source software

CO5 Enhance the skill levels in the field of analysis NMR spectra

j. Course outline (contact hours: 30)

Module 1: Introducing NMR: Basic elements of NMR, sensitivity, relaxation, quantification

(2 h)

Module 2: Theory: Angular Momentum, Energy level diagram, spin-spincoupling, magnetic

and chemical equivalence (2 h)

Module 3: Operator Algebra, Chemical shift, Anisotropy of chemical shifts (2 h)

Module 4: Instrumental aspects: principle, shimming, resolution, Free induction decay,

Fourier Transform, resolution and hardware. (2 h)

Module 5: 1D methods: optimising 1D data, decoupling, interactions shift (3h)

Module 6: Analysis of 1D NMR spectra (4 h)

Module 7: 2 D Methods: Homonuclear correlation spectroscopy (COSY, etc), Total

correlation spectroscopy, 13C-13C correlations (3h)

Module 8: Analysis of 2D NMR spectra (4 h)

Module 9: 2D Methods: Heteronuclear correlation spectroscopy (HSQC, HMQC, HSQC)(3 h)

Module 10: Computer simulation: NMR spectra simulation using open-source software. (5h)

BOOK FOR REFERENCE:

- 1. M.H. Levitt, Spin dynamics: Basics of Nuclear Magnetic Resonance, 2ndedition, John Wiley & Sons Ltd, 2008.
- 2. Harald Günther, NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry, 3rd Edition, 2013
- 3. Open-source analysis software: DMFit, Edit NMR: https://nmr.cemhti.cnrs-orleans.fr/Dmfit/Default.asp

k. Mapping of COs to POs & PSOs with correlation level and Cognitive level of COs

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	L	M	L	Н	L	M	M	L
CO2	L	Н	M	L	L	M	M	M
CO3	L	M	Н	L	L	L	M	M
CO4	L	L	Н	L	Н	L	M	Н
CO5	L	L	Н	L	Н	M	M	M

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	L	L	M	L	Н	M	M	L
CO2	L	Н	Н	L	L	M	Н	M
CO3	L	L	Н	L	L	L	Н	Н
CO4	L	L	Н	L	M	L	Н	Н
CO5	Н	M	Н	L	Н	M	Н	Н

(36) Raman Spectral Analysis

L	T	P	C
2	-	-	2

f. Course Code:

g. Course objectives:

- 1. To learn the Raman scattering powder diffraction essentials and various factors contributions to inorganic samples to x-ray diffraction peaks
- 2. To learn unit cell parameters, structure, size and strain determination from diffraction pattern and elucidation of structural parameters from the Rietveld refinement

h. Course prerequisites:

Basics of group theory, normal coordinates and normal modes (theory of small oscillations), anharmonic oscillator, selection rules

i. Course Outcome

On the successful completion of the value added course, the learner will be able to

CO1: Explain the Stoke's and anti-Stoke's lines, polarisation, mode assignment (K2)

CO2: Analyse the effect of temperature, pressure, size, composition on the Raman spectra (K5)

CO3: Construct character table of NH₃ (K6)

j. Course outline (contact hours: 30)

Module 1: Classical theory of Raman scattering, quantum theory, normal vibrations in

molecules, polarisation in molecules (5 Lectures)

Module 2: Normal vibrations in crystals, optical and acoustic branchs, factor group and site

group analysis, polarisation in crystals (5 Lectures)

Module 3: Instrumentation, excitation sources, sample illumination, monochromators and

detectors, FT Raman, Spectral fitting (5 Lectures)

Module 4: Raman spectral analysis of nanomaterials (3 lectures)

Module 5: Analysis of temperature-dependent Raman spectra (2 lectures)

Module 6: Analysis of Pressure-dependent Raman spectra (3 lectures)

Module 7: Analysis of Raman spectra of biological systems (4 lectures)

Module 8: Raman microscopy and in-situ measurements (3 lectures)

BOOK FOR REFERENCE:

2. John R. Ferraro, Kazuo Nakamoto and Chris Brown, Introductory Raman Spectroscopy, Second Edition, Elsevier (2003)

k. Mapping of COs to POs & PSOs with correlation level and Cognitive level of COs

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1(K2)	L	M	L	Н	L	M	M	L
CO2(K5)	L	Н	M	L	L	M	M	M
CO3(K6)	L	M	Н	L	L	L	M	M

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1(K2)	L	L	M	L	Н	M	M	L
CO2(K5)	L	Н	Н	L	L	M	Н	M
CO3(K6)	L	L	Н	L	L	L	Н	Н
